首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Unsupervised Profiling of Microglial Arbor Morphologies and Distribution Using a Nonparametric Bayesian Approach
【24h】

Unsupervised Profiling of Microglial Arbor Morphologies and Distribution Using a Nonparametric Bayesian Approach

机译:使用非参数贝叶斯方法对小胶质乔木形态和分布进行无监督分析

获取原文
获取原文并翻译 | 示例

摘要

The morphologies of microglial arbors in brain tissue are important indicators of their state of activation, and their spatial distribution indicates patterns of tissue perturbation. This paper presents a non-parametric Bayesian approach to unsupervised quantitative profiling of microglial activation states, and mapping their 3-D spatial distributions across extended brain tissue regions imaged by mosaiced confocal microscopy. Our approach is to perform large-scale automated reconstruction of all the microglia using a learned label-consistent dictionary model for the microglial processes, and extract 136 arbor features per cell. We then fit an infinite Gaussian mixture model with collapsed Gibbs sampling to the arbor features, to discover arbor-morphological classes, their morphological ‘signatures’, and the associated covariance matrices all in an unsupervised manner. This nonparametric approach can handle clusters with arbitrarily shaped covariance matrices, perform automatic model selection, handle unbalanced clusters, and detect overlapping classes, without the need to specify the number of clusters. The results can be used for diverse investigational purposes, including: population-scale modeling, automated discovery of arbor classes and their distinguishing quantitative signatures and features, quantifying the nature and extent of the cellular heterogeneity, and spatial mapping of cellular arbor morphologies, and mapping tissue alterations.
机译:脑组织中小胶质树突的形态是其激活状态的重要指标,其空间分布表明组织微扰的模式。本文提出了一种非参数贝叶斯方法,用于无监督的小胶质细胞激活状态定量分析,并绘制它们在镶嵌共聚焦显微镜成像的扩展脑组织区域中的3-D空间分布图。我们的方法是使用用于小胶质细胞过程的学习的标签一致词典模型对所有小胶质细胞进行大规模的自动重建,并提取每个细胞136个乔木特征。然后,我们使用折叠的Gibbs采样对乔木特征拟合无限高斯混合模型,以无人监督的方式发现乔木形态类,其形态“特征”以及相关的协方差矩阵。这种非参数方法可以处理具有任意形状的协方差矩阵的聚类,执行自动模型选择,处理不平衡的聚类,并检测重叠的类,而无需指定聚类的数量。结果可用于多种研究目的,包括:人口规模建模,自动发现乔木类及其区分的定量特征和特征,量化细胞异质性的性质和程度以及细胞乔木形态的空间制图和制图组织改变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号