首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Computationally Efficient Spatio-Temporal Dynamic Texture Recognition for Volatile Organic Compound (VOC) Leakage Detection in Industrial Plants
【24h】

Computationally Efficient Spatio-Temporal Dynamic Texture Recognition for Volatile Organic Compound (VOC) Leakage Detection in Industrial Plants

机译:工业厂挥发性有机化合物(VOC)漏电检测的计算上高效的时空动态纹理识别

获取原文
获取原文并翻译 | 示例

摘要

In this article, we present a computationally efficient algorithm to detect Volatile Organic Compounds (VOC) leaking out of components used in chemical processes in petrochemical refineries and chemical plants. A leaking VOC plume from a damaged component appears as a dynamic dark cloud in infrared videos. We describe a two-stage deep neural network structure, taking advantage of both spatial and temporal structure of the dynamic texture regions created by the leaking VOC plume. We first detect moving pixels which are darker then their neighboring pixels. We extract one-dimensional (1-D) signals representing the temporal history of such pixels from video and feed the 1-D signals to a 1-D convolutional neural network. If those pixels are near the edge of a VOC plume, their 1-D temporal signals exhibit high-frequency behavior. The neural network generates high probability estimates for such pixels. If 1-D neural network generates high confidence values, final decision is reached using a deep convolutional neural network (CNN) which processes image frames. The overall structure is computationally efficient because the spatio-temporal CNN does not process all of the image frames of the captured video. Experimental results are presented.
机译:在本文中,我们提出了一种计算上有效的算法,以检测泄漏出在石化炼油厂和化学植物中使用的化学过程中使用的组分的挥发性有机化合物(VOC)。来自损坏组件的泄漏VOC羽流量在红外视频中显示为动态暗云。我们描述了一种两级深度神经网络结构,利用泄漏VOC羽流产生的动态纹理区域的空间和时间结构。我们首先检测它们较暗的移动像素,然后是它们的相邻像素。我们提取一维(1-D)信号,表示来自视频的这些像素的时间历史,并将1-D信号馈送到1-D卷积神经网络。如果这些像素靠近VOC羽流的边缘,则其1-D时间信号表现出高频行为。神经网络为这些像素产生高概率估计。如果1-D神经网络产生高置信度值,则使用深卷积神经网络(CNN)来达到最终决定,该卷积神经网络(CNN)处理图像帧。整体结构是计算有效的,因为时空CNN不处理捕获视频的所有图像帧。提出了实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号