首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >CRNN-Based Multiple DoA Estimation Using Acoustic Intensity Features for Ambisonics Recordings
【24h】

CRNN-Based Multiple DoA Estimation Using Acoustic Intensity Features for Ambisonics Recordings

机译:基于声强特征的Ambionics录音基于CRNN的多重DoA估计

获取原文
获取原文并翻译 | 示例

摘要

Localizing audio sources is challenging in real reverberant environments, especially when several sources are active. We propose to use a neural network built from stacked convolutional and recurrent layers in order to estimate the directions of arrival of multiple sources from a first-order Ambisonics recording. It returns the directions of arrival over a discrete grid of a known number of sources. We propose to use features derived from the acoustic intensity vector as inputs. We analyze the behavior of the neural network by means of a visualization technique called layerwise relevance propagation. This analysis highlights which parts of the input signal are relevant in a given situation. We also conduct experiments to evaluate the performance of our system in various environments, from simulated rooms to real recordings, with one or two speech sources. The results show that the proposed features significantly improve performances with respect to raw Amhisonics inputs.
机译:在真实的混响环境中,尤其是当多个声源处于活动状态时,对声源进行本地化具有挑战性。我们建议使用由堆叠的卷积层和递归层构建的神经网络,以便从一阶Ambisonics记录中估计多个源的到达方向。它在已知数量来源的离散网格上返回到达方向。我们建议使用从声强矢量得出的特征作为输入。我们通过称为分层相关传播的可视化技术来分析神经网络的行为。该分析突出显示了在给定情况下输入信号的哪些部分是相关的。我们还进行了实验,以评估我们的系统在各种环境中的性能,从模拟房间到真实录音,只有一个或两个语音源。结果表明,相对于原始的Amhisonics输入,建议的功能显着提高了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号