首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Optimized Hyperspectral Band Selection Using Particle Swarm Optimization
【24h】

Optimized Hyperspectral Band Selection Using Particle Swarm Optimization

机译:使用粒子群算法优化高光谱波段选择

获取原文
获取原文并翻译 | 示例

摘要

A particle swarm optimization (PSO)-based system is proposed to select bands and determine the optimal number of bands to be selected simultaneously, which is near-automatic with only a few data-independent parameters. The proposed system includes two particle swarms, i.e., the outer one for estimating the optimal number of bands and the inner one for the corresponding band selection. To avoid employing an actual classifier within PSO so as to greatly reduce computational cost, criterion functions that can gauge class separability are preferred; specifically, minimum estimated abundance covariance (MEAC) and Jeffreys–Matusita (JM) distance are adopted in this research. The experimental results show that the 2PSO-based algorithm outperforms the popular sequential forward selection (SFS) method and PSO with one particle swarm in band selection.
机译:提出了一种基于粒子群优化(PSO)的系统来选择频带并确定要同时选择的最佳频带数,该系统几乎是自动的,仅具有一些与数据无关的参数。所提出的系统包括两个粒子群,即,外部粒子群用于估计最佳频带数量,而内部粒子群用于相应的频带选择。为了避免在PSO中使用实际的分类器以大大降低计算成本,首选可衡量类可分离性的准则函数;具体来说,本研究采用最小估计丰度协方差(MEAC)和Jeffreys–Matusita(JM)距离。实验结果表明,基于2PSO的算法在频带选择上优于传统的顺序前向选择算法和粒子群算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号