首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >A Band Selection Method for Hyperspectral Image Based on Particle Swarm Optimization Algorithm with Dynamic Sub-Swarms
【24h】

A Band Selection Method for Hyperspectral Image Based on Particle Swarm Optimization Algorithm with Dynamic Sub-Swarms

机译:基于动态子群粒子群算法的高光谱波段选择方法

获取原文
获取原文并翻译 | 示例

摘要

Band selection is an effective means to reduce the hyperspectral data size and to overcome the Hughes phenomenon in ground object classification. This paper presents a band selection method based on particle swarm dynamic with sub-swarms optimization, aiming at the deficiency of particle swarm optimization algorithm being easy to fall into local optimum when applied to hyperspectral image band selection. This algorithm treats fitness function as criterion, dividing all particles into different adaptation degree interval corresponding to the dynamic subgroup and adopting different optimization methods for different subgroups as well as sub -swarms parallel iterative searching for the optimal band. In this way, we can make achievement of clustering optimization of particle with different optimization capability, ensuring the diversity of particles in order to reduce the risk of falling into local optimum. Finally, we prove the effectiveness of this algorithm through selected bands validation by support vector machine.
机译:频带选择是减少高光谱数据大小并克服地面物体分类中的休斯现象的有效手段。针对粒子群优化算法在高光谱图像波段选择中容易陷入局部最优的不足,提出了一种基于粒子群动态和亚群优化的波段选择方法。该算法将适应度函数作为判据,将所有粒子划分为与动态子群相对应的不同适应度区间,对不同子群采用不同的优化方法,并通过子群并行迭代搜索最优频带。这样,就可以实现具有不同优化能力的粒子聚类优化,保证粒子的多样性,从而降低陷入局部最优的风险。最后,通过支持向量机对选定频段的验证,证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号