机译:基于地理对象的土壤有机物质映射,采用多源地质空间数据的机器学习算法
Changan Univ Dept Math & Informat Sci Coll Sci Xian 710064 Shaanxi Peoples R China|Fuzhou Univ Key Lab Spatial Data Min & Informat Sharing Minist Educ Fuzhou 350116 Fujian Peoples R China|State Key Lab Geoinformat Engn Xian 710054 Shaanxi Peoples R China;
Chinese Acad Sci State Key Lab Remote Sensing Sci Inst Remote Sensing & Digital Earth Beijing 100864 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;
Chinese Acad Sci State Key Lab Remote Sensing Sci Inst Remote Sensing & Digital Earth Beijing 100864 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;
Chinese Acad Sci State Key Lab Remote Sensing Sci Inst Remote Sensing & Digital Earth Beijing 100864 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;
Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310058 Zhejiang Peoples R China;
Ningxia Acad Agr & Forestry Sci Inst Agr Econ & Informat Technol Yinchuan 750004 Peoples R China;
Environmental variables; geo-object; machine learning algorithms; multi-source geo-spatial data; soil organic matter (SOM); soil property mapping;
机译:基于机器学习算法的多源地理空间数据基于地理对象的土壤有机质标测
机译:利用MODIS数据和机器学习算法绘制农田土壤有机质的动态图。
机译:基于机器学习算法的DEM衍生物,Sentinel-1和Sentinel-2数据的土壤有机碳和土壤总氮的高分辨率数字映射
机译:高光谱数据定量绘制土壤有机质含量的多元统计分析与模糊识别算法比较
机译:使用多源数据集成和机器学习的不确定性下的时空信息提取:用于人类解决模型的应用
机译:使用机器学习算法和热带环境中的遥感数据的滑坡易感性映射
机译:使用机器学习算法的土壤有机碳大规模数字映射