首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Hyperspectral Image Denoising via Subspace-Based Nonlocal Low-Rank and Sparse Factorization
【24h】

Hyperspectral Image Denoising via Subspace-Based Nonlocal Low-Rank and Sparse Factorization

机译:高光谱图像通过基于子空间的非识别低级和稀疏因子变化而去噪

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral images (HSIs) are unavoidably contaminated by different types of noise during data acquisition and transmission, e.g., Gaussian noise, impulse noise, stripes, and deadlines. A variety of mixed noise reduction approaches are developed for HSI, in which the subspace-based methods have achieved comparable performance. In this paper, a novel subspace-based nonlocal low-rank and sparse factorization (SNLRSF) method is proposed to remove the mixture of several types of noise. The SNLRSF method explores spectral low rank based on the fact that spectral signatures of pixels lie in a low-dimensional subspace and employs the nonlocal low-rank factorization to take the spatial nonlocal self-similarity into consideration. At the same time, the successive singular value decomposition (SVD) low-rank factorization algorithm is used to estimate three-dimensional (3-D) tensor generated by nonlocal similar 3-D patches. Moreover, the well-known augmented Lagrangian method is adopted to solve final denoising model efficiently. The experimental results over simulated and real datasets demonstrate that the proposed approach outperforms the related state-of-the-art methods in terms of visual quality and quantitative evaluation.
机译:高光谱图像(HSIS)在数据采集和传输期间不可避免地被不同类型的噪声污染,例如高斯噪声,脉冲噪声,条纹和截止日期。为HSI开发了各种混合降噪方法,其中基于子空间的方法取得了可比的性能。本文提出了一种新的基于子空间的非局部低级和稀疏分子(SNLRSF)方法,以除去几种类型的噪声的混合物。 SNLRSF方法根据像素的光谱签名位于低维子空间的事实,探讨了光谱低位,并且采用非识别低级别分子化以考虑空间非函数自相相似性。同时,连续的奇异值分解(SVD)低秩分解算法用于估计由非本体类似的3-D斑块产生的三维(3-D)张量。此外,采用了众所周知的增强拉格朗日方法来有效地解决最终的去噪模式。对模拟和实时数据集的实验结果表明,所提出的方法在视觉质量和定量评估方面优于相关的最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号