首页> 外文期刊>Neurocomputing >Low-rank Bayesian tensor factorization for hyperspectral image denoising
【24h】

Low-rank Bayesian tensor factorization for hyperspectral image denoising

机译:低秩贝叶斯张量分解用于高光谱图像去噪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a low-rank Bayesian tensor factorization approach for hyperspectral image (HSI) denoising problem, where zero-mean white and homogeneous Gaussian additive noise is removed from a given HSI. The approach is based on two intrinsic properties underlying a HSI, i.e., the global correlation along spectrum (GCS) and nonlocal self-similarity across space (NSS). We first adaptively construct the patch-based tensor representation for the HSI to extract the NSS knowledge while preserving the property of GCS. Then, we employ the low rank property in this representation to design a hierarchical probabilistic model based on Bayesian tensor factorization to capture the inherent spatial-spectral correlation of HSI, which can be effectively solved under the variational Bayesian framework. Furthermore, through incorporating these two procedures in an iterative manner, we build an effective HSI denoising model to recover HSI from its corruption. This leads to a state-of-the-art denoising performance, consistently surpassing recently published leading HSI denoising methods in terms of both comprehensive quantitative assessments and subjective visual quality. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种用于高光谱图像(HSI)去噪问题的低秩贝叶斯张量分解方法,该方法从给定的HSI中消除了零均值白和均质高斯加性噪声。该方法基于HSI的两个固有属性,即沿频谱的全局相关性(GCS)和跨空间的非局部自相似性(NSS)。我们首先为HSI自适应地构建基于补丁的张量表示,以提取NSS知识,同时保留GCS的属性。然后,我们在该表示中使用低秩属性来设计基于贝叶斯张量因子分解的分层概率模型,以捕获HSI固有的空间光谱相关性,这可以在变分贝叶斯框架下有效解决。此外,通过以迭代方式合并这两个过程,我们建立了有效的HSI去噪模型,以从其腐败中恢复HSI。这导致了最先进的降噪性能,无论是在全面的定量评估还是在主观视觉质量方面,都一直领先于最近发布的领先的HSI降噪方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号