首页> 外文期刊>Security and communication networks >Content-based image authentication by feature point clustering and matching
【24h】

Content-based image authentication by feature point clustering and matching

机译:通过特征点聚类和匹配进行基于内容的图像认证

获取原文
获取原文并翻译 | 示例

摘要

Digital multimedia makes fabricating and copying much easier than ever before. Therefore, it demands efficient and auto-matic techniques to identify and verify the content of digital multimedia. Image authentication is such a technique to auto-matically identify whether the query image is a fabrication or a simple copy of the original one. In this paper, we propose a perceptual image authentication technique based on clustering and matching of feature points of images. Feature points are first extracted from images with the K-largest local total variations and clustered using Fuzzy C-means clustering algorithm. Then, feature points in the query image and the anchor image are matched into pairs in zigzag ordering along the diagonals of the images cluster by cluster. In the mean time, the outliers of feature points are removed. Then, the system decisions about the authenticity of images are determined by the majority vote of whether three types of distance between matched feature point pairs are larger than their respective thresholds. The three types of distance include the following: (ⅰ) histogram-weighted distance, which is proposed in this paper; (ⅱ) the normalized Euclidean distance; and (ⅲ) the Hausdorff distance. The geometric transform between the query image and the anchor image is estimated, and the query image is registered. The possible tampered image blocks are detected, and the percentage of the tampered area is roughly estimated. The experimental results show the effectiveness and robustness of the proposed image authentication system.
机译:数字多媒体使制作和复制比以往更加容易。因此,它需要有效和自动的技术来识别和验证数字多媒体的内容。图像认证是一种自动识别查询图像是原始图像的伪造品还是简单复制品的技术。本文提出了一种基于图像特征点聚类和匹配的感知图像认证技术。首先从具有K个最大局部总变化量的图像中提取特征点,然后使用模糊C均值聚类算法对特征点进行聚类。然后,将查询图像和锚定图像中的特征点按照图像的对角线以锯齿形排列,成簇地成对匹配。同时,特征点的离群值被去除。然后,通过对匹配特征点对之间的三种类型的距离是否大于它们各自的阈值的多数投票来确定关于图像真实性的系统决策。三种类型的距离包括:(ⅰ)本文提出的直方图加权距离; (ⅱ)标准化的欧几里得距离; (ⅲ)Hausdorff距离。估计查询图像和锚图像之间的几何变换,并注册查询图像。检测可能的篡改图像块,并粗略估计篡改区域的百分比。实验结果表明了所提出的图像认证系统的有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号