首页> 外文期刊>Security and Communications Networks >Intraclass and interclass correlation coefficient-based feature selection in NIDS dataset
【24h】

Intraclass and interclass correlation coefficient-based feature selection in NIDS dataset

机译:NIDS数据集中基于类内和类间相关系数的特征选择

获取原文
获取原文并翻译 | 示例

摘要

Offline processing of network intrusion detection system (NIDS) dataset helps to mitigate network attacks. KDD CUP'99 was created using known network attacks in 1999. The changes in networking trend and advent of new attacks have raised the demand for new NIDS datasets. Recent test beds such as UNB-ISCX, SSENet, and ITD-UTM help in the evaluation and deployment of new network security algorithms. NIDS dataset generated from these test beds is used by the traditional feature selection methods, which focus on the whole dataset for the reduction of the number of features. Later, instead of whole dataset, selective dataset is used to choose the best feature set for a given attack. In this paper, the application of intraclass correlation coefficient and interclass correlation coefficient is proposed to achieve efficient target class-specific feature subset. It is envisioned that such a feature subset would help in countering an attack type. Experiments were conducted on classification algorithms to validate on four datasets the effectiveness of the feature subsets on pairwise target class with and without applying our proposed feature selection algorithm. It is found that the detection rate increased and execution time and false alarms decreased considerably after applying the proposed feature selection algorithm. Copyright (C) 2015 John Wiley & Sons, Ltd.
机译:网络入侵检测系统(NIDS)数据集的脱机处理有助于减轻网络攻击。 KDD CUP'99是在1999年使用已知的网络攻击创建的。网络趋势的变化和新攻击的出现提高了对新NIDS数据集的需求。 UNB-ISCX,SSENet和ITD-UTM等最新测试平台可帮助评估和部署新的网络安全算法。从这些测试台生成的NIDS数据集被传统的特征选择方法所使用,这些方法集中于整个数据集以减少特征数量。后来,选择性数据集取代了整个数据集,用于为给定攻击选择最佳功能集。本文提出利用类内相关系数和类间相关系数来实现有效的目标类特定特征子集。可以预见,这样的特征子集将有助于抵抗攻击类型。对分类算法进行了实验,以在使用和不应用我们提出的特征选择算法的情况下,在四个数据集上验证成对目标类别上特征子集的有效性。发现应用所提出的特征选择算法后,检测率提高,执行时间和虚警率大大降低。版权所有(C)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号