首页> 外文期刊>Security and Communications Networks >User-friendly random-grid-based visual secret sharing for general access structures
【24h】

User-friendly random-grid-based visual secret sharing for general access structures

机译:通用访问结构的用户友好的基于随机网格的可视秘密共享

获取原文
获取原文并翻译 | 示例

摘要

Compared with the visual-cryptography-based visual secret sharing, the random-grid-based visual secret sharing (RGVSS) has some technical advantages, such as no pixel expansion and no need of codebooks. Designed based on RGVSS, the user-friendly random-grid-based visual secret sharing (UFRGVSS) not only inherits the advantages of RGVSS but also overcomes the data management problem in RGVSS by taking meaningful images as shares. Unfortunately, up to now, the existing threshold UFRGVSS schemes are only (2, 2) ones, which should use two meaningful images with complementary colors as shares. What's more, there is no feasible method to construct UFRGVSS schemes for more general threshold access structures excluding (2, 2) threshold, let alone for general access structures (GASs). Motivated by these concerns, in this paper, by stamping the gray-scale images with the shares generated from the traditional RGVSS, a novel method was proposed to design the UFRGVSS scheme for GASs, in which the resulting shares can be any meaningful gray-scale images. Experimental results show the feasibility of the proposed method by assessing its performance under different situations. Literature retrieval shows that our work may be the first attempt to construct the UFRGVSS scheme for GASs. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:与基于视觉密码术的视觉秘密共享相比,基于随机网格的视觉秘密共享(RGVSS)具有一些技术优势,例如不需要像素扩展,也不需要密码本。基于RGVSS的用户友好型基于随机网格的可视秘密共享(UFRGVSS)不仅继承了RGVSS的优势,而且还通过将有意义的图像作为共享来克服RGVSS中的数据管理问题。不幸的是,到目前为止,现有的阈值UFRGVSS方案仅为(2,2),它应该使用两个具有互补色的有意义图像作为份额。而且,对于除(2,2)阈值以外的更通用的阈值访问结构,没有可行的方法来构造UFRGVSS方案,更不用说通用访问结构(GAS)了。基于这些考虑,本文通过用传统RGVSS产生的份额标记灰度图像,提出了一种新的方法来设计用于GAS的UFRGVSS方案,其中所得份额可以是任何有意义的灰度图片。实验结果通过评估其在不同情况下的性能证明了该方法的可行性。文献检索表明,我们的工作可能是构建GAS的UFRGVSS方案的首次尝试。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号