首页> 外文期刊>Scientific programming >Parallel preconditioned conjugate gradient square method based on normalized approximate inverses
【24h】

Parallel preconditioned conjugate gradient square method based on normalized approximate inverses

机译:基于归一化近似逆的并行预处理共轭梯度平方方法

获取原文
获取原文并翻译 | 示例

摘要

A new class of normalized explicit approximate inverse matrix techniques, based on normalized approximate factorization procedures, for solving sparse linear systems resulting from the finite difference discretization of partial differential equations in three space variables are introduced. A new parallel normalized explicit preconditioned conjugate gradient square method in conjunction with normalized approximate inverse matrix techniques for solving efficiently sparse linear systems on distributed memory systems, using Message Passing Interface (MPI) communication library, is also presented along with theoretical estimates on speedups and efficiency. The implementation and performance on a distributed memory MIMD machine, using Message Passing Interface (MPI) is also investigated. Applications on characteristic initial/boundary value problems in three dimensions are discussed and numerical results are given.
机译:介绍了一种基于归一化近似因式分解程序的归一化显式近似逆矩阵技术,用于求解由三个空间变量中的偏微分方程的有限差分离散化而产生的稀疏线性系统。还提出了一种新的并行归一化显式预处理共轭梯度平方方法,并结合归一化近似逆矩阵技术,利用消息传递接口(MPI)通信库有效解决了分布式存储系统上的稀疏线性系统,并提供了有关提速和效率的理论估计。还研究了使用消息传递接口(MPI)在分布式内存MIMD机器上的实现和性能。讨论了三维特征初值/边值问题的应用,并给出了数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号