首页> 外文期刊>Scientific programming >Enabling fair pricing on high performance computer systems with node sharing
【24h】

Enabling fair pricing on high performance computer systems with node sharing

机译:通过节点共享在高性能计算机系统上实现公平定价

获取原文
获取原文并翻译 | 示例

摘要

Co-location, where multiple jobs share compute nodes in large-scale HPC systems, has been shown to increase aggregate throughput and energy efficiency by 10-20%. However, system operators disallow co-location due to fair-pricing concerns, i.e., a pricing mechanism that considers performance interference from co-running jobs. In the current pricing model, application execution time determines the price, which results in unfair prices paid by the minority of users whose jobs suffer from co-location. This paper presents POPPA, a runtime system that enables fair pricing by delivering precise online interference detection and facilitates the adoption of supercomputers with co-locations. POPPA leverages a novel shutter mechanism - a cyclic, fine-grained interference sampling mechanism to accurately deduce the interference between co-runners - to provide unbiased pricing of jobs that share nodes. POPPA is able to quantify inter-application interference within 4% mean absolute error on a variety of co-located benchmark and real scientific workloads.
机译:托管在大型HPC系统中多个作业共享计算节点的协同托管已被证明可以将总吞吐量和能源效率提高10-20%。但是,由于公平定价的考虑,系统运营商不允许在同一地点办公,即考虑到共同运行作业的性能干扰的定价机制。在当前的定价模型中,应用程序执行时间决定了价格,这导致工作受托管的少数用户支付不公平的价格。本文介绍了POPPA,这是一个运行时系统,可通过提供精确的在线干扰检测来实现公平定价,并促进采用具有同一位置的超级计算机。 POPPA利用一种新颖的快门机制(一种循环的细粒度干扰采样机制,可以准确地推断出联合运行者之间的干扰),从而为共享节点的作业提供了公正的定价。 POPPA能够在各种共存基准测试和实际科学工作负载中,将应用程序间的干扰量化为平均绝对误差在4%以内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号