首页> 外文期刊>The Science of the Total Environment >Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China using a genetic algorithm in machine learning
【24h】

Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China using a genetic algorithm in machine learning

机译:利用机器学习中遗传算法在中国珠江三角洲地区多污染物控制策略大规模优化

获取原文
获取原文并翻译 | 示例

摘要

A scientifically sound integrated assessment modeling (IAM) system capable of providing optimized cost-benefit analysis is essential in effective air quality management and control strategy development Yet scenario optimization for large-scale applications is limited by the computational expense of optimization over many control factors. In this study, a multi-pollutant cost-benefit optimization system based on a genetic algorithm (GA) in machine learning has been developed to provide cost-effective air quality control strategies for large-scale applications (e.g., solution spaces of ~10~(35)). The method was demonstrated by providing optimal cost-benefit control pathways to attain air quality goals for fine paniculate matter (PM_(2.5)) and ozone (O_3) over the Pearl River Delta (PRD) region of China. The GA was found to be >99% more efficient than the commonly used grid searching method while providing the same combination of optimized multi-pollutant control strategies. The GA method can therefore address air quality management problems that are intractable using the grid searching method. The annual attainment goals for PM_(2.5) (< 35 μg m~(-3)) and O_3 (< 80 ppb) can be achieved simultaneously over the PRD region and surrounding areas by reducing NO_x (22%), volatile organic compounds (VOCs, 12%), and primary PM (30%) emissions. However, to attain stricter PM_(2.5) goals, SO_2 reductions (> 9%) are needed as well. The estimated benefit-to-cost ratio of the optimal control strategy reached 17.7 in our application, demonstrating the value of multi-pollutant control for cost-effective air quality management in the PRD region.
机译:能够提供优化的成本效益分析的科学声音综合评估建模(IAM)系统对于有效的空气质量管理和控制策略开发至关重要,但大规模应用的情景优化受到许多控制因素的优化计算费用的限制。在本研究中,已经开发了一种基于机器学习中遗传算法(GA)的多污染物成本效益优化系统,为大规模应用提供了成本效益的空气质量控制策略(例如,〜10〜〜10的解决方案空间(35))。通过提供最佳的成本效益控制途径来证明该方法,以获得在中国珠江三角洲(PRD)地区的细菌物质(PM_(2.5))和臭氧(O_3)的空气质量目标。该GA被发现比常用的网格搜索方法更有效,同时提供相同的优化多污染物控制策略组合。因此,GA方法可以解决使用网格搜索方法难以解决的空气质量管理问题。 PM_(2.5)(<35μgm〜(-3))和O_3(<80 ppb)的年度达到目标可以通过减少NO_X(22%),挥发性有机化合物( VOCS,12%)和主要PM(30%)排放。但是,为了获得更严格的PM_(2.5)目标,也需要SO_2减少(> 9%)。我们申请中最优控制策略的估计惠益分比与成本比率为17.7,展示了PRD地区经济高效的空气质量管理的多污染物控制价值。

著录项

  • 来源
    《The Science of the Total Environment》 |2020年第20期|137701.1-137701.12|共12页
  • 作者单位

    Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control College of Environment and Energy South China University of Technology Guangzhou Higher Education Mega Center Guangzhou 510006 China;

    Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control College of Environment and Energy South China University of Technology Guangzhou Higher Education Mega Center Guangzhou 510006 China Southern Marine Science and Engineering Guangdong Laboratory Sun Yat-Sen University Zhuhai 519000 China;

    US Environmental Protection Agency Office Air Quality Planning & Standards Research Triangle Park NC 27711 USA;

    US Environmental Protection Agency Office Air Quality Planning & Standards Research Triangle Park NC 27711 USA;

    State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China;

    State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China;

    Graduate Institute of Environmental Engineering National Taiwan University Taipei 10673 Taiwan Carbon Cycle Research Center National Taiwan University 10672 Taiwan;

    Southern Marine Science and Engineering Guangdong Laboratory Sun Yat-Sen University Zhuhai 519000 China;

    Chinese Academy for Environmental Planning Beijing 100012 China;

    Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control College of Environment and Energy South China University of Technology Guangzhou Higher Education Mega Center Guangzhou 510006 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Air pollution control strategies; Cost-benefit analysis; Multi-pollutant optimization; Genetic algorithm; Ozone; PM_(2.5);

    机译:空气污染控制策略;成本效益分析;多污染物优化;遗传算法;臭氧;PM_(2.5);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号