...
首页> 外文期刊>The Science of the Total Environment >Assessing pH-dependent toxicity of fluoxetine in embryonic zebrafish using mass spectrometry-based metabolomics
【24h】

Assessing pH-dependent toxicity of fluoxetine in embryonic zebrafish using mass spectrometry-based metabolomics

机译:使用质谱基于基于质谱的代谢组织评估胚胎斑马鱼中氟西汀的pH依赖性毒性

获取原文
获取原文并翻译 | 示例
           

摘要

While it is well known that fluoxetine is more toxic to aquatic organisms at high pH, the metabolic dysregulations related to observed pH-dependent effects are still poorly understood. In the present study, we utilized a gas chro-matography mass spectrometry (GC-MS) based metabolomics approach to assess metabolomic profile changes in developing zebrafish embryos following exposure (2 hpf-96 hpf) to different concentrations of fluoxetine at three environmentally relevant pH values (7.0,8.0, and 9.0). Multivariate data analyses and pathway analyses were used to assess metabolomic profile changes and elicit important biochemical information regarding pH-dependent toxicity of fluoxetine. Overall, the affected biochemical functions related to fluoxetine exposure included amino acid metabolism, energy metabolism, nitrogenous waste excretion and osmolyte functions. While fluoxetine exposure (56 μg/L, 70 μg/L and 500 μg/L) caused no significant changes at pH 7, 500 μg/L and 70 μg/L fluoxetine was differentiated from the controls at pH 8 and pH 9 respectively. Three, eight and seven metabolites were identified as the most adversely affected at pH 7,8 and 9, respectively. The altered metabolites associated with fluoxetine toxicity at high pH included urea, glycine and D-glucose 6-phosphate. Exposure to 70 μg/L fluoxetine, did not cause significant metabolomic profile changes at pH 7, However, the results indicate that this exposure concentration at pH and 9 can cause significant metabolic dysregulation related to apoptosis and oxidative stress. Increasing aqueous pH progressively enhanced fluoxetine induced toxicity for the 70 μg/L exposure group. The observed impacts included higher energy consumption at pH 7, a breakdown of reserve energy to supplement energy demand at pH 8 and impaired lipid metabolism at pH 9. This study provides important information regarding molecular-level effects related to pH-dependent exposure of fluoxetine in embryonic zebrafish.
机译:众所周知,氟西汀在高pH下对水生生物毒性更大,仍然是观察到的pH依赖性效应相关的代谢缺陷仍然明白。在本研究中,我们利用基于气体克拉法的质谱(GC-MS)的代谢组种方法来评估在暴露(2 HPF-96 HPF)后发育斑马鱼胚胎在三种环境相关的pH下的不同浓度浓度的氟西汀的变化值(7.0,8.0和9.0)。多变量数据分析和途径分析用于评估代谢组分的变化,并引出关于氟西汀的pH依赖性毒性的重要生物化学信息。总体而言,受影响的生化功能与氟西汀暴露有关,包括氨基酸代谢,能量代谢,氮气排泄和渗透功能。氟西汀暴露(56μg/ L,70μg/ L和500μg/ L)在pH 7中没有显着变化,500μg/ L和70μg/ l氟苯甲酰胺分别在pH8和pH 9的对照中分别区分。将三,八个和七种代谢物分别鉴定为pH7,8和9的最不利影响。在高pH包括脲,甘氨酸和D-葡萄糖6-磷酸盐中与氟氯胺毒性相关的改变的代谢物。暴露于70μg/ L氟苯氧脲,在pH7的情况下没有引起显着的代谢形状曲线变化,然而,结果表明pH和9的这种暴露浓度会导致与细胞凋亡和氧化应激有关的显着代谢性失调。增加水pH水溶液逐渐增强氟西汀诱导的70μg/ L暴露组的毒性。观察到的影响包括pH7的能量消耗较高,储备能量的崩溃,以在pH8的pH8下补充能量需求并在pH9时受损。本研究提供了关于与氟西汀的pH依赖性暴露有关的分子水平效应的重要信息胚胎斑马鱼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号