首页> 外文期刊>Science of Computer Programming >Improving software effort estimation using bio-inspired algorithms to select relevant features: An empirical study
【24h】

Improving software effort estimation using bio-inspired algorithms to select relevant features: An empirical study

机译:使用生物启发算法改进软件努力估计,选择相关特征:实证研究

获取原文
获取原文并翻译 | 示例

摘要

Context: Bio-inspired feature selection algorithms got the attention of the researchers in the domain of Software Development Effort Estimations (SDEE) because they can improve the prediction accuracy of existing estimation techniques, such as machine learning methods. Objective: This paper aims to analyze different feature selection algorithms and assess the role they can play to increase the accuracy of software development effort predictions. Method: We have performed an empirical study considering commonly used bio-inspired feature selection algorithms in the domain of SDEE, i.e., Genetic Algorithm (GA), Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Harmony Search (HS), and Firefly algorithm, and four traditional non-bio-inspired algorithms, i.e., Best-First Search (BFS), Greedy Stepwise, Subset Forward Selection, and Random Search, used in combination with five widely used estimation techniques and applied to eight widely used SDEE datasets. Results: The performed analysis suggests that almost all (bio-inspired) feature selection algorithms have outperformed the baseline estimation techniques (i.e., techniques employed without any feature selection algorithms) in the majority of the experiments and hence we can conclude that feature selection algorithms can help in the domain of SDEE to increase the prediction accuracy. Similarly, HS and GA are considered as best performed bio-inspired algorithms because they provided significantly better results than the non-bio-inspired algorithms in a greater number of experiments. Moreover, we also compared the results of various employed bio-inspired algorithms, and, again, GA and HS came out as the best performed bio-inspired feature selection algorithms. Conclusion: From our results, if we have to pick feature selection algorithms (from both bio- and non-bio-inspired) and recommend them for future investigations, we would suggest HS because it provided better effort predictions in more combinations of datasets and estimation techniques than the other considered bio- and non-bio-inspired algorithms. Among the non-bio-inspired algorithms, BFS is the one that provided better predictions.
机译:背景信息:生物启发特征选择算法引起了软件开发工作估算领域的研究人员(SDEE),因为它们可以提高现有估计技术的预测准确性,例如机器学习方法。目的:本文旨在分析不同的特征选择算法,并评估它们可以发挥的作用,以提高软件开发工作预测的准确性。方法:考虑到SDEE域,即遗传算法(GA),粒子群优化,蚁群优化,禁忌搜索,和声搜索(HS)和萤火虫,考虑常用的生物启发特征选择算法进行了考虑常用生物启发特征选择算法的实证研究算法和四种传统的非生物启发算法,即最佳首先搜索(BFS),贪婪逐步,子集二向前选择和随机搜索,与五种广泛使用的估计技术组合使用,并应用于八个广泛使用的SDEE数据集。结果:所执行的分析表明,几乎所有(生物启发)特征选择算法都优于大多数实验中的基线估计技术(即,没有任何特征选择算法所采用的技术),因此我们可以得出结论特征选择算法可以帮助在SDEE的域中提高预测准确性。类似地,HS和Ga被认为是最佳的生物启发算法,因为它们比在更多的实验中的非生物启发算法提供了明显的结果。此外,我们还将各种采用的生物启发算法的结果进行了比较,而且,GA和HS再次出现了最佳的生物启发特征选择算法。结论:从我们的结果中,如果我们必须选择特征选择算法(来自生物和非生物启发)并推荐他们以便将来的调查推荐,我们会建议HS,因为它提供了更好的进展预测数据集和估计的更多组合技术比其他关于生物和非生物启发算法的技术。在非生物启发算法中,BFS是提供更好预测的BF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号