首页> 外文OA文献 >Effectiveness of Feature Selection and Machine Learning Techniques for Software Effort Estimation
【2h】

Effectiveness of Feature Selection and Machine Learning Techniques for Software Effort Estimation

机译:特征选择和机器学习技术对软件工作量估计的有效性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimation of desired effort is one of the most important activities in software project management. This work presents an approach for estimation based upon various feature selection and machine learning techniques for non-quantitative data and is carried out in two phases. The first phase concentrates on selection of optimal feature set of high dimensional data, related to projects undertaken in past. A quantitative analysis using Rough Set Theory and Information Gain is performed for feature selection. The second phase estimates the effort based on the optimal feature set obtained from first phase. The estimation is carried out differently by applying various Artificial Neural Networks and Classification techniques separately. The feature selection process in the first phase considers public domain data (USP05). The effectiveness of the proposed approach is evaluated based on the parameters such as Mean Magnitude of Relative Error (MMRE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Confusion Matrix. Machine learning methods, such as Feed Forward neural network, Radial Basis Function network, Functional Link neural network, Levenberg Marquadt neural network, Naive Bayes Classifier, Classification and Regression Tree and Support Vector classification, in combination of various feature selection techniques are compared with each other in order to find an optimal pair. It is observed that Functional Link neural network achieves better results among other neural networks and Naive Bayes classifier performs better for estimation when compared with other classification techniques.
机译:估算所需的工作量是软件项目管理中最重要的活动之一。这项工作提出了一种基于各种特征选择和针对非量化数据的机器学习技术进行估算的方法,并分两个阶段进行。第一阶段集中于选择高维数据的最佳特征集,这与过去进行的项目有关。使用粗糙集理论和信息增益进行定量分析以进行特征选择。第二阶段根据从第一阶段获得的最佳功能集估算工作量。通过分别应用各种人工神经网络和分类技术,可以不同地进行估算。第一阶段的功能选择过程考虑了公共领域数据(USP05)。基于诸如相对误差的均值(MMRE),均方根误差(RMSE),均值绝对误差(MAE)和混淆矩阵之类的参数,评估了该方法的有效性。机器学习方法(例如前馈神经网络,径向基函数网络,Functional Link神经网络,Levenberg Marquadt神经网络,朴素贝叶斯分类器,分类和回归树以及支持向量分类)结合各种特征选择技术进行了比较为了找到最佳配对。可以看出,与其他神经网络相比,Functional Link神经网络在其他神经网络中取得了更好的结果,而朴素贝叶斯分类器在评估方面表现更好。

著录项

  • 作者

    Shivhare Km.Jyoti;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号