首页> 外文期刊>Science of Computer Programming >Complete algorithms for algebraic strongest postconditions and weakest preconditions in polynomial ODES
【24h】

Complete algorithms for algebraic strongest postconditions and weakest preconditions in polynomial ODES

机译:多项式ODES中代数最强后置条件和最弱先决条件的完整算法

获取原文
获取原文并翻译 | 示例

摘要

A system of polynomial ordinary differential equations (ODES) is specified via a vector of multivariate polynomials, or vector field, F. A safety assertion ψ → [F]φ means that the trajectory of the system will lie in a subset φ (the postcondition) of the state-space, whenever the initial state belongs to a subset ψ (the precondition). We consider the case when φ and ψ are algebraic varieties, that is, zero sets of polynomials. In particular, polynomials specifying the postcondition can be seen as a system's conservation laws implied by ψ. Checking the validity of algebraic safety assertions is a fundamental problem in, for instance, hybrid systems. We consider a generalized version of this problem, and offer an algorithm that, given a user specified polynomial set P and an algebraic precondition ψ, finds the largest subset of polynomials in P implied by ψ (relativized strongest postcondition). Under certain assumptions on φ, this algorithm can also be used to find the largest algebraic invariant included in φ and the weakest algebraic precondition for φ. Applications to continuous semialgebraic systems are also considered. The effectiveness of the proposed algorithm is demonstrated on several case studies from the literature.
机译:通过多元多项式或向量场F的向量指定多项式常微分方程(ODES)的系统。安全断言ψ→[F]φ表示系统的轨迹将位于子集φ中(后置条件),无论初始状态何时属于子集ψ(前提条件)。我们考虑φ和ψ是代数形式,即多项式为零集的情况。特别是,指定后置条件的多项式可以看作是ψ所隐含的系统守恒律。例如,在混合系统中,检查代数安全性断言的有效性是一个基本问题。我们考虑此问题的广义形式,并提供一种算法,给定用户指定的多项式集合P和代数先决条件ψ,可以找到ψ所隐含的P中多项式的最大子集(相对最强后置条件)。在关于φ的某些假设下,该算法还可用于找到φ中包含的最大代数不变量和φ的最弱代数先决条件。还考虑了在连续半代数系统中的应用。文献中的一些案例研究证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号