...
首页> 外文期刊>Scanning >Comparison in Spatial Spreads of Secondary Electron Information between Scanning Ion and Scanning Electron Microscopy
【24h】

Comparison in Spatial Spreads of Secondary Electron Information between Scanning Ion and Scanning Electron Microscopy

机译:扫描离子与扫描电子显微镜之间二次电子信息的空间传播比较

获取原文
获取原文并翻译 | 示例

摘要

Monte Carlo simulations have been carried out to compare the spatial spreads of secondary electron (SE) information in scanning ion microscopy (SIM) with scanning electron microscopy (SEM). Under Ga ion impacts, the SEs are excited by three kinds of collision-partners, that is, projectile ion, recoiled target atom, and target electron. The latter two partners dominantly contribute to the total SE yield γ for the materials of low atomic number Z_2. For the materials of high Z_2, on the other hand, the projectile ions dominantly contribute to γ. These Z_2 dependencies generally cause the γ yield to decrease with an increasing Z_2, in contrast with the SE yield δ under electron impacts. Most of the SEs are produced in the surface layer of about 5λ in depth (λ: the mean free path of SEs), as they are independent of the incident probe. Under 30 keV Ga ion impacts, the spatial spread of SE information is roughly as small as 10 nm, decreasing with an increasing Z_2. Under 10 keV electron impacts, the SE_Ⅰ excited by the primary electrons has a small spatial spread of about 5λ, but the SE_Ⅱ excited by the backscattered electrons has a large one of several 10 to several 100 nanometers, decreasing with an increasing Z_2. The main cause of a small spread of SE information at ion impact is the short ranges of the projectile ions returning to the surface to escape as backscattered ions, the recoiled target atoms, and the target electrons in collision cascade. The 30 keV Ga-SIM imaging is better than the 10 keV SEM imaging in spatial resolution for the structure/material measurements. Here, zero-size probes are assumed.
机译:进行了蒙特卡洛模拟,以比较扫描离子显微镜(SIM)和扫描电子显微镜(SEM)中二次电子(SE)信息的空间分布。在Ga离子的冲击下,SEs被弹丸离子,反冲靶原子和靶电子三种碰撞伙伴激发。后两个伙伴主要对低原子序数Z_2的材料的总SE产量γ做出贡献。另一方面,对于高Z_2的材料,射弹离子占主导地位。与电子冲击下的SE产量δ相反,这些Z_2依赖性通常导致γ产量随Z_2的增加而降低。大多数SE产生于深度约为5λ的表层(λ:SE的平均自由程),因为它们与入射探针无关。在30 keV Ga离子冲击下,SE信息的空间分布大致小至10 nm,并随着Z_2的增加而减小。在10 keV电子冲击下,一次电子激发的SE_Ⅰ的空间分布较小,约为5λ,而反向散射电子激发的SE_Ⅱ的纳米值为10到100纳米,随着Z_2的增加而减小。离子撞击时SE信息扩散很小的主要原因是,短距离的射弹离子以反向散射离子,反冲的靶原子和靶电子在碰撞级联中返回表面逃逸。对于结构/材料测量,在空间分辨率上,30 keV Ga-SIM成像优于10 keV SEM成像。在此,假设零探针。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号