首页> 外文期刊>Russian Journal of Numerical Analysis and Mathematical Modelling >A fast iteration method for solving elliptic problems with quasiperiodic coefficients
【24h】

A fast iteration method for solving elliptic problems with quasiperiodic coefficients

机译:一种求解拟周期系数椭圆问题的快速迭代方法

获取原文
获取原文并翻译 | 示例

摘要

The paper suggests a preconditioning type method for fast solving of elliptic equations with oscillating quasiperiodic coefficients A(epsilon) specified by the small parameter epsilon > 0. We use an iteration method generated by an elliptic operator, associated with a certain simplified (e.g., homogenized) problem. On each step of this procedure it is required to solve an auxiliary elliptic boundary value problem with non-oscillating coefficients, where typically the coefficients are smooth or piecewise constant. All the information related to complicated coefficients of the original differential problem is encompasses in the linear functional, which forms the right hand side of the auxiliary problem. For this reason, inversion of the original operator associated with oscillating coefficients is avoided. The only operation required instead is multiplication of it on a vector (vector function), which can be efficiently performed due to the low QTT-rank tensor operations with the rank parameter controlled by the given precision delta > 0 independent on the parameter epsilon. We prove that solutions generated by the iteration method converge to the solution of the original problem provided that the parameter of the iteration algorithm has been properly selected. Moreover, we deduce two-sided a posteriori error estimates that do not use A(epsilon)(-1) and enable us to compute guaranteed bounds of the distance to the exact solution of the original problem for any step of the iteration process. For a wide class of oscillating coefficients, we obtain sharp QTT rank estimates for the stiffness matrix in tensor representation. In practice, this leads to the logarithmic complexity scaling of the approximation and solution process in both the FEM grid-size, and the frequency parameter 1/epsilon. Numerical tests in 1D confirm the logarithmic complexity O(vertical bar log epsilon vertical bar) of the proposed method applied to a class of complicated highly-oscillating coefficients.
机译:本文提出了一种预条件类型的方法,该方法用于快速求解由小参数epsilon> 0指定的振荡拟周期系数A(epsilon)的椭圆方程。我们使用由椭圆算子生成的迭代方法,并将其与某些简化的(例如,均化的)关联)问题。在此过程的每个步骤中,都需要解决一个系数不振荡的辅助椭圆边界值问题,其中系数通常是平滑或分段常数。与原始微分问题的复杂系数有关的所有信息都包含在线性泛函中,它构成了辅助问题的右侧。因此,避免了与振荡系数相关的原始算子的求逆。相反,唯一需要的操作是将其与向量相乘(向量函数),这归因于QTT秩张量运算的效率低,并且秩参数受给定精度delta> 0的控制,而与参数epsil无关。我们证明,只要正确选择了迭代算法的参数,迭代方法生成的解就可以收敛到原始问题的解。此外,我们推导了不使用A(epsilon)(-1)的双面后验误差估计,并使我们能够为迭代过程的任何步骤计算到原始问题的精确解的距离的保证范围。对于各种振荡系数,我们获得了张量表示中的刚度矩阵的清晰QTT秩估计。实际上,这导致在FEM网格大小和频率参数1 /ε两者中,逼近和求解过程的对数复杂度缩放。一维数值测试证实了该方法应用于一类复杂的高振荡系数的对数复杂度O(vertical bar log epsilon vertical bar)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号