首页> 外文期刊>Running algorithm of simulator of wireless distributed measurement-control system with rule based processing >Hardware-Efficient Schemes of Quaternion Multiplying Units for 2D Discrete Quaternion Fourier Transform Processors
【24h】

Hardware-Efficient Schemes of Quaternion Multiplying Units for 2D Discrete Quaternion Fourier Transform Processors

机译:二维离散四元数傅里叶变换处理器的四元数乘法单元的硬件高效方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we offer and discuss three efficient structural solutions for the hardware-oriented implementation of discrete quaternion Fourier transform basic operations with reduced implementation complexities. The first solution - a scheme for calculating sq product, the second solution -a scheme for calculating q! product, and the third solution - a scheme for calculating sqt product, where s is a so-called i -quaternion, t is an i - quaternion, and q - is an usual quaternion. The direct multiplication of two usual quaternions requires 16 real multiplications (or two-operand multipliers in the case of fully parallel hardware implementation) and 12 real additions (or binary adders). At the saine time, our solutions allow to design the computation units, which consume only 6 multipliers plus 6 two input adders for implementation of , sq or qt basic operations and 9 binary multipliers plus 6 two-input adders and 4 four-input adders for implementation of sqt basic operation.
机译:在本文中,我们提供并讨论了三种有效的结构化解决方案,这些方法可用于实现面向硬件的离散四元数Fourier变换基本操作,并具有降低的实现复杂性。第一个解决方案-用于计算平方积的方案,第二个解决方案-用于计算q!的方案!乘积,第三种解决方案-一种计算sqt乘积的方案,其中s是所谓的i-四元数,t是i-四元数,而q-是通常的四元数。两个常用四元数的直接乘法需要16个实数乘法(或在完全并行硬件实现的情况下为两个操作数乘法器)和12个实数加法(或二进制加法器)。在Saine时代,我们的解决方案允许设计计算单元,该计算单元仅消耗6个乘法器加6个用于实现sq或qt基本运算的两个输入加法器,以及9个二进制乘法器加上6个两输入加法器和4个四输入加法器。实施sqt基本操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号