首页> 外文期刊>Robotica >Neural Network Design for Manipulator Collision Detection Based Only on the Joint Position Sensors
【24h】

Neural Network Design for Manipulator Collision Detection Based Only on the Joint Position Sensors

机译:仅基于接合位置传感器的操纵器碰撞检测的神经网络设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a multilayer feedforward neural network (NN) is designed and trained, for human-robot collisions detection, using only the intrinsic joint position sensors of a manipulator. The topology of one NN is designed considering the coupled dynamics of the robot and trained, with and without external contacts, by Levenberg-Marquardt algorithm to detect unwanted collisions of the human operator with the manipulator and the link that is collided. The proposed approach could be applied to any industrial robot, where only the joint position signals are available. The designed NN is compared quantitatively and qualitatively with an NN, where both the intrinsic joint position and the torque sensors of the manipulator are used. The proposed method is evaluated experimentally with the KUKA LWR manipulator, which is considered as an example of the collaborative robots, using two of its joints in a planar horizontal motion. The results illustrate that the developed system is efficient and fast to detect the collisions and identify the collided link.
机译:在本文中,设计并训练了多层前馈神经网络(NN),用于仅使用操纵器的固有接合位置传感器进行人机机器人碰撞检测。考虑到机器人的耦合动力学和培训,在Levenberg-Marquardt算法中考虑机器人的耦合动力学和培训,其中没有外部触点,以检测人类操作员的不希望的碰撞和碰撞的链路。所提出的方法可以应用于任何工业机器人,其中只有接合位置信号可用。使用NN定量和定性地比较设计的NN,其中使用机械手的固有接头位置和扭矩传感器。用Kuka LWR操纵器实验评估所提出的方法,其被认为是协作机器人的示例,其使用平面水平运动中的两个接头。结果说明了发达的系统是有效快速的,以检测碰撞并识别碰撞链接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号