首页> 外文期刊>Robotica >Transformation of LQRWeights for Discretization Invariant Performance of PI/PID Dominant Pole Placement Controllers
【24h】

Transformation of LQRWeights for Discretization Invariant Performance of PI/PID Dominant Pole Placement Controllers

机译:用于PI / PID主导极点布置控制器离散化不变性能的LQRWeights变换

获取原文
获取原文并翻译 | 示例

摘要

Linear quadratic regulator (LQR), a popular technique for designing optimal state feedback controller, is used to derive a mapping between continuous and discrete time inverse optimal equivalence of proportional integral derivative (PID) control problem via dominant pole placement. The aim is to derive transformation of the LQR weighting matrix for fixed weighting factor, using the discrete algebraic Riccati equation (DARE) to design a discrete time optimal PID controller producing similar time response to its continuous time counterpart. Continuous time LQR-based PID controller can be transformed to discrete time by establishing a relation between the respective LQR weighting matrices that will produce similar closed loop response, independent of the chosen sampling time. Simulation examples of first/second order and first-order integrating processes exhibiting stable/unstable and marginally stable open loop dynamics are provided, using the transformation of LQR weights. Time responses for set-point and disturbance inputs are compared for different sampling times as fraction of the desired closed loop time constant.
机译:线性二次调节器(LQR)是一种用于设计最佳状态反馈控制器的流行技术,用于通过优势极点放置来导出比例积分微分(PID)控制问题的连续时间与离散时间逆最优等价性之间的映射。目的是使用离散代数Riccati方程(DARE)设计离散时间最优PID控制器,以产生与其连续时间对应物相似的时间响应,从而得出固定权重因子的LQR加权矩阵的变换。通过在各个LQR加权矩阵之间建立关系,可以将基于LQR的连续时间PID控制器转换为离散时间,该关系将产生类似的闭环响应,而与所选采样时间无关。使用LQR权重的转换,提供了显示稳定/不稳定和边际稳定的开环动力学的一阶/二阶和一阶积分过程的仿真示例。对于不同的采样时间,将设置点和干扰输入的时间响应作为所需闭环时间常数的一部分进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号