首页> 外文期刊>Robotica >A methodology for fault diagnosis in robotic systems using neural networks
【24h】

A methodology for fault diagnosis in robotic systems using neural networks

机译:使用神经网络的机器人系统故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Fault diagnosis plays an important role in the operation of modern robotic systems. A number of researchers have proposed fault diagnosis architectures for robotic manipulators using the model-based analytical redundancy approach. One of the key issues in the design of such fault diagnosis schemes is the effect of modeling uncertainties on their performance. This paper investigates the problem of fault diagnosis in rigid-link robotic manipulators with modeling uncertainties. A learning architecture with sigmoi-dal neural networks is used to monitor the robotic system for off-nominal behavior due to faults. The robustness, sensitivity, missed detection and stability properties of the fault diagnosis scheme are rigorously established. Simulation examples are presented to illustrate the ability of the neural network based robust fault diagnosis scheme to detect and accommodate faults in a two-link robotic manipulator.
机译:故障诊断在现代机器人系统的运行中起着重要作用。许多研究人员提出了使用基于模型的分析冗余方法为机器人操纵器提供故障诊断的体系结构。设计此类故障诊断方案的关键问题之一是对不确定性进行建模对其性能的影响。本文研究具有模型不确定性的刚性连杆机械手的故障诊断问题。具有sigmoi-dal神经网络的学习体系结构用于监视机器人系统中由于故障引起的异常行为。严格建立了故障诊断方案的鲁棒性,灵敏度,漏检率和稳定性。给出了仿真示例,以说明基于神经网络的鲁棒故障诊断方案检测和容纳双链接机器人操纵器中的故障的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号