首页> 外文期刊>Robotica >Multiobjective optimization of parallel kinematic mechanismsby the genetic algorithms
【24h】

Multiobjective optimization of parallel kinematic mechanismsby the genetic algorithms

机译:遗传算法的并联运动机构多目标优化

获取原文
获取原文并翻译 | 示例

摘要

It is well known that Parallel Kinematic Mechanisms (PKMs) have an intrinsic dynamic potential (very high speed and acceleration) with high precision and high stiffness. Nevertheless, the choice of optimal dimensions that provide the best performances remains a difficult task, since performances strongly depend on dimensions. On the other hand, there are many criteria of performance that must be taken into account for dimensional synthesis, and which are sometimes antagonist. This paper presents an approach of multiobjective optimization for PKMs that takes into account several criteria of performance simultaneously that have a direct impact on the dimensional synthesis of PKMs. We first present some criteria of performance such as the workspace, transmission speeds, stiffness, dexterity, precision, as well as dynamic dexterity. Secondly, we present the problem of dimensional synthesis, which will be defined as a multiobjective optimization problem. The method of genetic algorithms is used to solve this type of multiobjective optimization problem by means of NSGA-Ⅱ and SPEA-Ⅱ algorithms. Finally, based on a linear Delta architecture, we present an illustrative application of this methodology to a 3-axis machine tool in the context of manufacturing of automotive parts.
机译:众所周知,并联运动机构(PKM)具有内在的动态潜力(非常高的速度和加速度),具有高精度和高刚度。然而,由于性能很大程度上取决于尺寸,因此选择具有最佳性能的最佳尺寸仍然是一项艰巨的任务。另一方面,对于尺寸合成,必须考虑许多性能标准,这些标准有时是对立的。本文提出了一种针对PKM的多目标优化方法,该方法同时考虑了几个性能标准,这些标准直接影响PKM的维综合。我们首先介绍一些性能标准,例如工作空间,传输速度,刚度,灵巧性,精度以及动态灵巧性。其次,我们提出了尺寸综合问题,它将被定义为一个多目标优化问题。利用遗传算法的方法通过NSGA-Ⅱ算法和SPEA-Ⅱ算法解决了这类多目标优化问题。最后,基于线性Delta架构,我们在汽车零件制造的背景下,将这种方法论应用于3轴机床。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号