首页> 外文期刊>Robotica >An improved FastSLAM 2.0 algorithm based on FC&ASD-PSO
【24h】

An improved FastSLAM 2.0 algorithm based on FC&ASD-PSO

机译:一种基于FC&ASD-PSO的改进的FastSLAM 2.0算法

获取原文
获取原文并翻译 | 示例

摘要

FastSLAM 2.0 is a popular framework which uses a Rao-Blackwellized particle filter to solve the simultaneous localization and mapping problem. The sampling process is one of the most important phases in the FastSLAM 2.0 framework. Its estimation accuracy depends heavily on a correct prior knowledge about the control and observation noise statistics (the covariance matrices Q and R). Without the correct prior knowledge about these matrices, the estimation accuracy of the robot path and landmark positions may degrade seriously. However in many applications, the prior knowledge is unknown, or these noises are non-stationary. In this paper, these covariance matrices are supposed to be dynamic and denoted as Q(t) and R-t. Since there are noises, time-adjacent observations are inconsistent with each other. This inconsistency can reflect the real value of the covariance matrices. By the inconsistency, an extra step is introduced to the FastSLAM 2.0 framework. This step makes Q(t) and R-t match with their real value by using a particle swarm optimization method based on fractional calculus and alpha stable distribution (FC&ASD-PSO). Both simulation and experimental results show that the proposed algorithm improves the accuracy by the more accurate estimation on the noise covariance matrices.
机译:FastSLAM 2.0是一个流行的框架,它使用Rao-Blackwellized粒子滤波器来解决同时定位和映射问题。采样过程是FastSLAM 2.0框架中最重要的阶段之一。其估计精度在很大程度上取决于对控制和观察噪声统计信息(协方差矩阵Q和R)的正确先验知识。如果没有关于这些矩阵的正确的先验知识,则机器人路径和界标位置的估计精度可能会严重下降。但是,在许多应用中,先验知识是未知的,或者这些噪声是不稳定的。在本文中,这些协方差矩阵被认为是动态的,分别表示为Q(t)和R-t。由于存在噪声,因此与时间相邻的观测结果彼此不一致。这种不一致可以反映协方差矩阵的实际值。由于不一致,FastSLAM 2.0框架引入了额外的步骤。此步骤通过使用基于分数演算和alpha稳定分布(FC&ASD-PSO)的粒子群优化方法,使Q(t)和R-t与其实际值匹配。仿真和实验结果均表明,该算法通过对噪声协方差矩阵进行更准确的估计来提高精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号