首页> 外文期刊>Robotica >A geometric approach for singularity analysis of 3-DOF planar parallel manipulators using Grassmann-Cayley algebra
【24h】

A geometric approach for singularity analysis of 3-DOF planar parallel manipulators using Grassmann-Cayley algebra

机译:使用Grassmann-Cayley代数的3自由度平面并联机械手奇异性分析的几何方法

获取原文
获取原文并翻译 | 示例

摘要

Singular configurations of parallel manipulators (PMs) are special poses in which the manipulators cannot maintain their inherent infinite rigidity. These configurations are very important because they prevent the manipulator from being controlled properly, or the manipulator could be damaged. A geometric approach is introduced to identify singular conditions of planar parallel manipulators (PPMs) in this paper. The approach is based on screw theory, Grassmann- Cayley Algebra (GCA), and the static Jacobian matrix. The static Jacobian can be obtained more easily than the kinematic ones in PPMs. The Jacobian is expressed and analyzed by the join and meet operations of GCA. The singular configurations can be divided into three classes. This approach is applied to ten types of common PPMs consisting of three identical legs with one actuated joint and two passive joints.
机译:并联机械手(PM)的奇异配置是特殊的姿势,在这些姿势中,机械手无法保持其固有的无限刚性。这些配置非常重要,因为它们会阻止对操纵器的正确控制,否则可能会损坏操纵器。本文介绍了一种几何方法来识别平面并联机械手(PPM)的奇异条件。该方法基于螺丝理论,Grassmann-Cayley代数(GCA)和静态Jacobian矩阵。静态雅可比定律比运动中的雅可比定律更容易获得。雅可比行列式是通过GCA的join and Meet操作来表达和分析的。奇异配置可以分为三类。此方法适用于十种类型的普通PPM,它们由三个相同的支腿和一个致动关节和两个被动关节组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号