首页> 外文期刊>Review of Scientific Instruments >Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers
【24h】

Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers

机译:最小二乘拟合的功率谱分析:振幅偏差及其消除,应用于光镊和原子力显微镜悬臂

获取原文
           

摘要

Optical tweezers and atomic force microscope (AFM) cantilevers are often calibrated by fitting their experimental power spectra of Brownian motion. We demonstrate here that if this is done with typical weighted least-squares methods, the result is a bias of relative size between -2 and +1 on the value of the fitted diffusion coefficient. Here, n is the number of power spectra averaged over, so typical calibrations contain 10%–20% bias. Both the sign and the size of the bias depend on the weighting scheme applied. Hence, so do length-scale calibrations based on the diffusion coefficient. The fitted value for the characteristic frequency is not affected by this bias. For the AFM then, force measurements are not affected provided an independent length-scale calibration is available. For optical tweezers there is no such luck, since the spring constant is found as the ratio of the characteristic frequency and the diffusion coefficient. We give analytical results for the weight-dependent bias for the wide class of systems whose dynamics is described by a linear (integro)differential equation with additive noise, white or colored. Examples are optical tweezers with hydrodynamic self-interaction and aliasing, calibration of Ornstein–Uhlenbeck models in finance, models for cell migration in biology, etc. Because the bias takes the form of a simple multiplicative factor on the fitted amplitude (e.g. the diffusion coefficient), it is straightforward to remove and the user will need minimal modifications to his or her favorite least-squares fitting programs. Results are demonstrated and illustrated using synthetic data, so we can compare fits with known true values. We also fit some commonly occurring power spectra once-and-for-all in the sense that we give their parameter values and associated error bars as explicit functions of experimental power-spectral values.
机译:光学镊子和原子力显微镜(AFM)的悬臂通常通过拟合布朗运动的实验功率谱进行校准。我们在这里证明,如果用典型的加权最小二乘法完成此操作,则结果是拟合扩散系数的值在-2 / n和+ 1 / n之间的相对大小偏差。在这里,n是平均功率谱数,因此典型的校准包含10%至20%的偏差。偏差的符号和大小均取决于所应用的加权方案。因此,基于扩散系数的长度刻度校准也是如此。特征频率的拟合值不受此偏置的影响。对于AFM,只要可以进行独立的长度刻度校准,力的测量就不会受到影响。对于光镊来说,没有这样的运气,因为发现弹簧常数是特征频率与扩散系数的比值。我们给出了宽泛类系统的重量相关偏差的分析结果,这些系统的动力学由带有加性噪声(白色或彩色)的线性(整数)微分方程描述。例如具有光动力相互作用和混叠的光镊,金融中的Ornstein–Uhlenbeck模型的校准,生物学中的细胞迁移模型等。因为偏差在拟合振幅上采用简单的乘数形式(例如,扩散系数) ),删除起来很简单,用户只需对其最喜欢的最小二乘拟合程序进行最少的修改即可。使用合成数据演示和说明了结果,因此我们可以将拟合值与已知真实值进行比较。我们还一劳永逸地拟合了一些常见的功率谱,因为我们将它们的参数值和相关的误差线作为实验功率谱值的显式函数给出。

著录项

  • 来源
    《Review of Scientific Instruments》 |2010年第7期|P.075103-075103-16|共16页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号