首页> 外文期刊>Rendiconti del Circolo Matematico di Palermo >A note on complete rings of quotients and McCoy rings
【24h】

A note on complete rings of quotients and McCoy rings

机译:关于商的完整环和McCoy环的注释

获取原文
获取原文并翻译 | 示例

摘要

If a (commutative unital) ring $A$ is reduced and coincides with its total quotient ring, then $A$ satisfies Property A (that is, $A$ is a McCoy ring) if and only if the inclusion of $A$ in its complete ring of quotients $C(A)$ is a survival extension. The “if” assertion fails if one deletes the hypothesis that $A$ is reduced. This is shown by using the idealization construction to construct a suitable ring $A$ and then identifying its complete ring of quotients (which turns out to be a related idealization). Related characterizations of von Neumann regular rings are also given with the aid of the going-down property GD of ring extensions. For instance, a ring $A$ is von Neumann regular if and only if $A$ is a reduced McCoy ring that coincides with its total quotient ring such that $A subseteq C(A)$ satisfies GD.
机译:如果(交换单位)环$ A $减少并与其总商环重合,则$ A $满足且仅当在其中包含$ A $时,属性A(即$ A $是McCoy环)满足。其完整的商环$ C(A)$是生存的扩展。如果删除$ A $减少的假设,则“ if”断言将失败。通过使用理想化构造来构造合适的环$ A $,然后标识其完整的商环(这证明是相关的理想化),可以证明这一点。冯·诺伊曼正则环的相关特征也借助于环延伸的下降性质GD给出。例如,当且仅当$ A $是与其总商环重合的还原McCoy环,使得$ Asubseteq C(A)$满足GD时,环$ A $是冯·诺依曼正则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号