首页> 外文期刊>Reliability Engineering & System Safety >Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks
【24h】

Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks

机译:拓扑措施评价抗震风险与电力网络复原力的预测能力

获取原文
获取原文并翻译 | 示例

摘要

Electric Power Networks (EPNs) play a fundamental role in the wellbeing of modern societies and recovery of societal functions after an earthquake. Risk and resilience analyses may identify useful network characteristics to improve EPN response and recovery during and after a severe seismic event. This work computes different functional measures in order to: (i) estimate the actual risk and resilience of EPNs; and (ii) evaluate the predictive capacity of different topological measures (TMs) relative to the EPN earthquake risk performance. The analysis is carried out on the Chilean EPN at the national, regional and substation level, by using a detailed model of the network. EPN operation was modeled using the DC optimal power flow model from the time of earthquake occurrence until full system recovery using the Seismic Probabilistic Risk Assessment framework. Seismic risk and resilience estimations of Energy Not Supplied (ENS) and number of hours with ENS have been correlated with six network TMs. Linear correlation results show that TMs provide, in general, limited insight into the criticality of the Chilean EPN. In spite of that, the strongest correlation was observed for the degree TM. Moreover, the Damage Consequence Index confirmed the rather uniformly distributed seismic risk along the country.
机译:电力网络(EPNS)在现代社会的福祉中发挥着基本作用,并在地震发生后恢复社会功能。风险和弹性分析可以识别有用的网络特征,以改善严重地震事件期间和之后的EPN响应和恢复。这项工作计算了不同的功能措施,以便:(i)估计EPNS的实际风险和恢复力; (ii)评估不同拓扑措施(TMS)相对于EPN地震风险绩效的预测能力。通过使用网络的详细模型,在国家,区域和变电站级别的智利EPN上进行了分析。使用S地震概率风险评估框架,使用DC最佳功率流模型建模了EPN操作,直到抗震发生,直到完全系统恢复。无法提供(ENS)的能量的地震风险和恢复能量估算和ex的小时数与六个网络TMS相关。线性相关结果表明,TMS提供了对智利EPN临界的有限洞察力。尽管如此,观察到最强烈的相关性TM。此外,损害后果指数证实了沿着该国相当均匀的分布式地震风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号