首页> 外文期刊>Reliability Engineering & System Safety >Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation
【24h】

Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation

机译:多状态系统劣化隐马尔可夫模型的过渡率的顺序贝叶斯推断

获取原文
获取原文并翻译 | 示例

摘要

The more easily available system performance data and advances in data analytics have provided us with opportunities to optimize maintenance programs for engineered systems, for example nuclear power plants. One key task in maintenance optimization is to obtain an accurate model for system degradation. In this research, we propose a Bayesian method to address this problem. Noting that systems usually exhibit multiple states and that the actual state of a system usually is not directly observable, in the method we first model the system degradation process and the observation process based on a hidden Markov model. Then we develop a sequential Bayesian inference algorithm based on importance sampling and the forward algorithm to infer the posterior distributions of the transition rates in the hidden Markov model based on available observations. The proposed Bayesian method allows us to take advantage of evidence from multiple sources, and also allows us to perform Bayesian inference sequentially, without the need to use the entire history of observations every time new observations are collected. We demonstrate the proposed method using both synthetic data for a nuclear power plant feedwater pump and realistic data for a nuclear power plant chemistry analytical device.
机译:更容易获得的系统性能数据和数据分析的进步已经为我们提供了优化工程系统维护程序的机会,例如核电厂。维护优化中的一个关键任务是获得一个准确的系统劣化模型。在这项研究中,我们提出了一种解决这个问题的贝叶斯方法。注意到系统通常表现出多个状态,并且系统的实际状态通常不是直接可观察到的,在我们首先模拟系统劣化过程和基于隐马尔可夫模型的观察过程中。然后,我们基于可用观察,基于重要性采样和前向算法的前向算法开发一个顺序贝叶斯推理算法,以推断隐马尔可夫模型中的过渡率的后部分布。提出的贝叶斯方法允许我们利用来自多种来源的证据,并且还允许我们顺序地执行贝叶斯推动,而每次收集新的观察时都需要使用整个观测历史。我们展示了使用核电厂给水泵的合成数据的所提出的方法,以及核电厂化学分析装置的现实数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号