首页> 外文期刊>Reliability Engineering & System Safety >Remaining useful life estimation using deep metric transfer learning for kernel regression
【24h】

Remaining useful life estimation using deep metric transfer learning for kernel regression

机译:使用深度度量转移学习进行内核回归的剩余使用寿命估算

获取原文
获取原文并翻译 | 示例

摘要

Accurate estimation of remaining useful life (RUL) is indispensable for the safe operation of rotating machinery, reducing maintenance costs and unnecessary downtime. Numerous data-driven models have been reported to predict the RUL of bearings using historical data. However, it is still very challenging to predict the RUL of bearings under different operating conditions. It is necessary to propose a model which can extract domain invariant deep features and accurately predict the RUL of bearings under new operating condition. In this paper, a novel method called deep transfer metric learning for kernel regression (DTMLKR) is proposed and applied to the RUL prediction of bearings under multiple operating conditions. This method combines deep metric learning with transfer learning (TL) to solve regression problems. Case studies on the IEEE PHM Challenge 2012 dataset demonstrate the effectiveness of the proposed method. Compared with other state-of-the-art methods, the superiority of the proposed method is verified.
机译:准确估计剩余使用寿命(RUL)对于旋转机械的安全操作,降低维护成本和不必要的停机时间是必不可少的。据报道,据报道了许多数据驱动的模型来预测使用历史数据的轴承rul。然而,预测不同操作条件下的轴承率仍然非常具有挑战性。有必要提出一种模型,可以提取域不变的深度特征,并准确地预测新的操作条件下的轴承。本文提出了一种称为核回归(DTMLKR)的深度传递度量学习的新方法,并应用于多个操作条件下轴承的ruL预测。该方法将深度度量学习与传输学习(TL)结合起来解决回归问题。关于IEEE PHM挑战2012数据集的案例研究证明了该方法的有效性。与其他最先进的方法相比,验证了所提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号