首页> 外文期刊>Reliability Engineering & System Safety >Remaining useful lifetime prediction via deep domain adaptation
【24h】

Remaining useful lifetime prediction via deep domain adaptation

机译:通过深度域自适应剩余有用的寿命预测

获取原文
获取原文并翻译 | 示例

摘要

In Prognostics and Health Management (PHM) sufficient prior observed degradation data is usually critical for Remaining Useful Lifetime (RUL) prediction. Most previous data-driven methods assume that training (source) and testing (target) condition monitoring data have similar distributions. However, due to different operating conditions, fault modes and noise, distribution and feature shift exist across different domains. This shift reduces the performance of predictive models when no target observed run-to-failure data is available. To address this issue, this paper proposes a new data-driven approach for domain adaptation in prognostics using Long Short-Term Neural Networks (LSTM). We use a Domain Adversarial Neural Network (DANN) approach to adapt remaining useful life estimates to a target domain containing only sensor information. We analyse our approach using the NASA Commercial Modular Aero-Propulsion System Simulation (C-MAPPS). The results show that the proposed method can provide more reliable RUL predictions than models trained only on source data for varying operating conditions and fault modes.
机译:在预测和健康管理(PHM)中,足够的先前观察到的降解数据通常对于剩余使用寿命(RUL)预测至关重要。以前的大多数数据驱动方法都假设训练(源)和测试(目标)状态监视数据具有相似的分布。然而,由于不同的工作条件,故障模式和噪声,分布和特征偏移在不同域之间存在。当没有目标观察到的运行失败数据可用时,此转变会降低预测模型的性能。为了解决这个问题,本文提出了一种新的数据驱动方法,用于使用长短期神经网络(LSTM)进行预后领域的适应。我们使用域对抗神经网络(DANN)方法将剩余使用寿命估算值调整为仅包含传感器信息的目标域。我们使用NASA商业模块化航空推进系统仿真(C-MAPPS)分析我们的方法。结果表明,相对于仅针对变化的工况和故障模式在源数据上训练的模型,该方法可以提供更可靠的RUL预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号