首页> 外文期刊>Reliability Engineering & System Safety >Development of a quantitative Bayesian network mapping objective factors to subjective performance shaping factor evaluations: An example using student operators in a digital nuclear power plant simulator
【24h】

Development of a quantitative Bayesian network mapping objective factors to subjective performance shaping factor evaluations: An example using student operators in a digital nuclear power plant simulator

机译:开发将贝叶斯网络映射到主观绩效影响因素评估的客观因素的定量贝叶斯网络:在数字核电站模拟器中使用学生算子的示例

获取原文
获取原文并翻译 | 示例

摘要

Traditional human reliability analysis methods consist of two main steps: assigning values for performance shaping factors (PSFs), and assessing human error probability (HEP) based on PSF values. Both steps rely on expert judgment. Considerable advances have been made in reducing reliance on expert judgment for HEP assessment by incorporating human performance data from various sources (e.g., simulator experiments); however, little has been done to reduce reliance on expert judgment for PSF assignment. This paper introduces a data-driven approach for assessing PSFs in Nuclear Power Plants (NPPs) based on contextual information. The research illustrates how to develop a Bayesian PSF network using data collected from student operators in a NPP simulator. The approach starts with a baseline PSF model that calculates PSF values from context information during an accident scenario. Then, a Bayesian model is developed to link the baseline model to the Subjective PSFs. Two additional factors are included: simulator bias and context information. Results and analysis include variation between the results of the proposed model and the training dataset, and the significance of each element in the model. The proposed approach reduces the reliance of PSF assignment on expert judgment and is particularly suitable for dynamic human reliability analysis.
机译:传统的人为可靠性分析方法包括两个主要步骤:为绩效塑造因子(PSF)分配值,以及基于PSF值评估人为错误概率(HEP)。这两个步骤都取决于专家的判断。通过合并来自各种来源的人类绩效数据(例如模拟器实验),在减少对HEP评估的专家判断的依赖方面取得了重大进展;但是,为减少对PSF分配的专家判断的依赖,所做的工作很少。本文介绍了一种基于上下文信息的数据驱动方法,用于评估核电厂(NPP)中的PSF。该研究说明了如何使用在NPP模拟器中从学生运营商那里收集的数据来开发贝叶斯PSF网络。该方法从基线PSF模型开始,该模型在事故场景中根据上下文信息计算PSF值。然后,建立贝叶斯模型以将基线模型链接到主观PSF。其中包括两个附加因素:模拟器偏差和上下文信息。结果和分析包括所提出的模型的结果与训练数据集之间的差异,以及模型中每个元素的重要性。所提出的方法减少了PSF分配对专家判断的依赖,特别适用于动态人类可靠性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号