首页> 外文期刊>Reliability Engineering & System Safety >Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model
【24h】

Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model

机译:基于两因素状态空间模型的时变工况下的机械剩余使用寿命预测

获取原文
获取原文并翻译 | 示例

摘要

The growth of the Industrial Internet of Things (IIoT) has generated a renewed emphasis on research of prognostic degradation modeling whereby degradation signals, such as vibration signals, temperature and acoustic emissions, are used to estimate the state-of-health and predict the remaining useful life (RUL). Besides the inherent system state, external operating conditions, such as the rotational speed and load also play a significant role in the behavior of degradation signals. Time-varying operating conditions often cause two major effects on the degradation signals. First, they change the degradation rate of systems. Second, they cause signal jumps at condition change-points. These two factors make RUL prediction more difficult under time-varying operating conditions. This paper proposes a RUL prediction method by introducing these two factors into a state-space model. Changes in the degradation rate are introduced into a state transition function, and jumps in the degradation signals are introduced into a measurement function. The separate analysis of these two factors makes it possible to distinguish their own contributions to RUL prediction, thus avoiding false alarms and improving the prediction accuracy. The effectiveness of the proposed method is demonstrated using both a simulation study and an accelerated degradation test of rolling element bearings.
机译:工业物联网(IIoT)的发展重新强​​调了对预后退化建模的研究,其中使用退化信号(例如振动信号,温度和声发射)来评估健康状况并预测剩余状态使用寿命(RUL)。除了固有的系统状态外,外部运行条件(例如转速和负载)在劣化信号的行为中也起着重要作用。时变操作条件通常会对降级信号产生两个主要影响。首先,它们改变了系统的退化率。其次,它们会导致条件变化点处的信号跳变。这两个因素使RUL预测在时变操作条件下更加困难。通过将这两个因素引入状态空间模型,提出了一种RUL预测方法。劣化率的变化被引入状态转移函数,并且劣化信号的跳跃被引入测量函数。通过对这两个因素的单独分析,可以区分出它们对RUL预测的贡献,从而避免了误报并提高了预测准确性。滚动轴承的仿真研究和加速退化试验证明了该方法的有效性。

著录项

  • 来源
    《Reliability Engineering & System Safety》 |2019年第6期|88-100|共13页
  • 作者单位

    Xi An Jiao Tong Univ, Educ Minist Modern Design & Rotor Bearing Syst, Key Lab, Xian 710049, Shaanxi, Peoples R China|Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, 765 Ferst Dr, Atlanta, GA 30332 USA;

    Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, 765 Ferst Dr, Atlanta, GA 30332 USA;

    Xi An Jiao Tong Univ, Educ Minist Modern Design & Rotor Bearing Syst, Key Lab, Xian 710049, Shaanxi, Peoples R China;

    Mississippi State Univ, Ind & Syst Engn Dept, Mississippi State, MS 39762 USA;

    Xi An Jiao Tong Univ, Educ Minist Modern Design & Rotor Bearing Syst, Key Lab, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Prognostic degradation modeling; Remaining useful life prediction; Time-varying operating conditions; State-space model;

    机译:预后退化建模;剩余使用寿命预测;时变工作条件;状态空间模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号