首页> 外文OA文献 >Remaining Useful Life Prediction for Rotating Machinery Based on Optimal Degradation Indicator
【2h】

Remaining Useful Life Prediction for Rotating Machinery Based on Optimal Degradation Indicator

机译:基于最佳降解指示剂剩余的旋转机械寿命预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Remaining useful life (RUL) prediction can provide early warnings of failure and has become a key component in the prognostics and health management of systems. Among the existing methods for RUL prediction, the Wiener-process-based method has attracted great attention owing to its favorable properties and flexibility in degradation modeling. However, shortcomings exist in methods of this type; for example, the degradation indicator and the first predicting time (FPT) are selected subjectively, which reduces the prediction accuracy. Toward this end, this paper proposes a new approach for predicting the RUL of rotating machinery based on an optimal degradation indictor. First, a genetic programming algorithm is proposed to construct an optimal degradation indicator using the concept of FPT. Then, a Wiener model based on the obtained optimal degradation indicator is proposed, in which the sensitivities of the dimensionless parameters are utilized to determine the FPT. Finally, the expectation of the predicted RUL is calculated based on the proposed model, and the estimated mean degradation path is explicitly derived. To demonstrate the validity of this model, several experiments on RUL prediction are conducted on rotating machinery. The experimental results indicate that the method can effectively improve the accuracy of RUL prediction.
机译:剩余的使用寿命(RUL)预测可以提供早期的失败警告,并已成为系统预测和健康管理中的关键组成部分。在RUL预测的现有方法中,由于其有利性和劣化建模的灵活性,基于维纳过程的方法引起了很大的关注。然而,这种类型的方法存在缺点;例如,主观地选择劣化指示符和第一预测时间(FPT),这降低了预测精度。迄今为止,本文提出了一种基于最佳降解指标来预测旋转机械rul的新方法。首先,提出了一种遗传编程算法来使用FPT的概念构建最佳劣化指示符。然后,提出了一种基于所获得的最佳劣化指示符的维纳模型,其中利用无量点参数的敏感度来确定FPT。最后,基于所提出的模型计算预测RUL的期望,并且明确地派生了估计的平均劣化路径。为了证明该模型的有效性,在旋转机械上进行了关于RUL预测的几个实验。实验结果表明,该方法可以有效地提高RUL预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号