首页> 外文期刊>Reliability Engineering & System Safety >A hybrid prognostic method for system degradation based on particle filter
【24h】

A hybrid prognostic method for system degradation based on particle filter

机译:基于粒子滤波的系统退化混合预测方法

获取原文
获取原文并翻译 | 示例

摘要

Prognostics of the remaining useful life has become a critical technique to ensure the reliability and safety of system, however, due to the uncertainty of system degradation, the prognostic result is usually not so satisfactory. To solve this problem, a hybrid prognostic scheme with the capability of uncertainty assessment is proposed in this paper, which combines particle filter (PF) and relevance vector machine (RVM). The prognostic result comprises a set of deterministic prediction values to represent the degradation process and a prediction interval to evaluate the prediction uncertainty. In order to examine the performance of the proposed hybrid method, four types of comparative experiments based on two types of lithium-ion battery datasets and two degradation models are performed. The experimental results show that the proposed hybrid scheme is a reliable prognostic method which can ensure the accuracy of the deterministic prediction result and provide precise assessment for the prediction uncertainty.
机译:剩余使用寿命的预测已成为确保系统可靠性和安全性的关键技术,但是,由于系统性能下降的不确定性,其预测结果通常不能令人满意。为了解决这个问题,本文提出了一种具有不确定性评估能力的混合预测方案,该方案结合了粒子滤波(PF)和相关向量机(RVM)。预后结果包括一组确定性的预测值(代表退化过程)和一个预测间隔,以评估预测不确定性。为了检查所提出的混合方法的性能,基于两种类型的锂离子电池数据集和两种降解模型进行了四种类型的比较实验。实验结果表明,所提出的混合方案是一种可靠的预后方法,可以保证确定性预测结果的准确性,并对预测不确定性提供准确的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号