首页> 外文期刊>Reliability Engineering & System Safety >Developing ladder network for intelligent evaluation system: Case of remaining useful life prediction for centrifugal pumps
【24h】

Developing ladder network for intelligent evaluation system: Case of remaining useful life prediction for centrifugal pumps

机译:开发用于智能评估系统的梯形网络:离心泵剩余使用寿命预测的案例

获取原文
获取原文并翻译 | 示例

摘要

Intelligent evaluation system has been widely used in industries to estimate essential indexes which are unable to be measured directly through physical devices. Due to the complexity of labeling samples, common data-driven techniques such as supervised learning are developed on a small number of labeled data, while a large amount of unlabeled data is discarded. The amount of labeled information greatly limits the improvement of prediction accuracies. Furthermore, conventional evaluation approaches have only static structures, which makes the dynamic characteristics of parameters difficult to be presented. This paper proposes a ladder network (LN) based semi-supervised learning model to evaluate parameter dynamics, and a case of remaining useful life (RUL) prediction for centrifugal pumps is illustrated. LN datasets comprise a small part of labeled data and a large amount of unlabeled data. We exploited fluid-structure interaction (FSI) numerical simulation to replace actual monitoring, as well as built a RUL prediction model to annotate useful life for offline datasets. After that, the RUL was performed in the online stage by substituting real-time monitored variables into the network. The case study indicates that the LN-based intelligent evaluation system identifies the real-time RUL profile and achieves better predictive outcomes than supervised learning approaches.
机译:智能评估系统已广泛应用于工业中,以估算无法通过物理设备直接测量的基本指标。由于标记样本的复杂性,在少量标记数据上开发了通用数据驱动技术(例如监督学习),而大量未标记数据被丢弃。标记信息的数量极大地限制了预测准确性的提高。此外,常规评估方法仅具有静态结构,这使得参数的动态特性难以呈现。本文提出了一种基于梯形网络(LN)的半监督学习模型来评估参数动力学,并举例说明了离心泵的剩余使用寿命(RUL)预测情况。 LN数据集包括一小部分标记数据和大量未标记数据。我们利用流固耦合(FSI)数值模拟来替代实际监测,并建立了RUL预测模型来注释离线数据集的使用寿命。之后,通过将实时监视变量代入网络,在在线阶段执行RUL。案例研究表明,与基于监督的学习方法相比,基于LN的智能评估系统可以识别实时RUL配置文件并获得更好的预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号