首页> 外文期刊>Reliability Engineering & System Safety >Formulating informative, data-based priors for failure probability estimation in reliability analysis
【24h】

Formulating informative, data-based priors for failure probability estimation in reliability analysis

机译:为可靠性分析中的故障概率估计制定基于信息的先验信息

获取原文
获取原文并翻译 | 示例

摘要

Priors play an important role in the use of Bayesian methods in risk analysis, and using all available information to formulate an informative prior can lead to more accurate posterior inferences. This paper examines the practical implications of using five different methods for formulating an informative prior for a failure probability based on past data. These methods are the method of moments, maximum likelihood (ML) estimation, maximum entropy estimation, starting from a non-informative 'pre-prior', and fitting a prior based on confidence/credible interval matching. The priors resulting from the use of these different methods are compared qualitatively, and the posteriors are compared quantitatively based on a number of different scenarios of observed data used to update the priors. The results show that the amount of information assumed in the prior makes a critical difference in the accuracy of the posterior inferences. For situations in which the data used to formulate the informative prior is an accurate reflection of the data that is later observed, the ML approach yields the minimum variance posterior. However, the maximum entropy approach is more robust to differences between the data used to formulate the prior and the observed data because it maximizes the uncertainty in the prior subject to the constraints imposed by the past data.
机译:先验先验在风险分析中使用贝叶斯方法中扮演着重要角色,使用所有可用信息来制定信息丰富的先验可以导致更准确的后验推断。本文研究了基于过去的数据,使用五种不同的方法为故障概率制定信息先验的实际意义。这些方法是矩方法,最大似然(ML)估计,最大熵估计,从无信息的“先验”开始,并基于置信度/可信区间匹配拟合先验的方法。对使用这些不同方法产生的先验进行定性比较,并根据用于更新先验的观测数据的许多不同情况对后验进行定量比较。结果表明,先验假设的信息量对后验推断的准确性产生了重大影响。对于用于表示先验信息的数据准确反映以后观察到的数据的情况,ML方法会产生最小的后验方差。但是,最大熵方法对于用于公式化先验数据和观察数据的数据之间的差异更为鲁棒,因为它受过去数据施加的约束,使先验数据的不确定性最大化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号