首页> 外文期刊>Reliability Engineering & System Safety >Selection of regressand for fitting the extreme value distributions using the ordinary, weighted and generalized least-squares methods
【24h】

Selection of regressand for fitting the extreme value distributions using the ordinary, weighted and generalized least-squares methods

机译:使用普通,加权和广义最小二乘法选择回归和拟合极值分布

获取原文
获取原文并翻译 | 示例

摘要

Fitting the extreme value distributions to samples is needed in many reliability analysis problems. The ordinary, weighted and generalized least-squares methods (OL, WL and GL method) are used to fit extreme value distributions based on the moments of order statistics and adopted plotting positions. An analyst may consider the observed ordered sample or the reduced variate as the regressand. The choice of the regressand for the least-squares methods and their corresponding relative accuracy are not always clear. Simulation results are presented in this study to rank the performance of the OL, WL and GL methods in combination with the choice of the regressands to estimate the distribution parameters, quantiles and nonexceedance probability. Analysis results for the OL method are also presented by adopting different plotting positions. The results indicate that the use of the ordered sample as the regressand is preferred. In such a case, the GL method outperforms the OL and WL methods for small sample size; the performance of the OL, WL and GL methods are similar for the sample size greater than about 20. The application of the OL method can be of value, if the adopted plotting position approximates well the mean of order statistics.
机译:在许多可靠性分析问题中,需要将极值分布拟合到样本。普通的,加权的和广义的最小二乘方法(OL,WL和GL方法)用于基于订单统计时刻和采用的绘图位置来拟合极值分布。分析人员可以将观察到的有序样本或减少的变量视为回归。最小二乘法的回归和选择及其相应的相对精度并不总是很清楚。在本研究中给出了仿真结果,以对OL,WL和GL方法的性能进行排序,并结合回归变量的选择来估计分布参数,分位数和超额概率。 OL方法的分析结果还通过采用不同的绘图位置来表示。结果表明,优选使用有序样本作为回归。在这种情况下,对于小样本量,GL方法优于OL方法和WL方法。对于大于约20的样本量,OL,WL和GL方法的性能相似。如果采用的绘图位置很好地近似于阶次统计量的平均值,则OL方法的应用可能很有价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号