首页> 外文期刊>Reliability Engineering & System Safety >Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation
【24h】

Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation

机译:使用振动热成像非破坏性评估检测飞机发动机风扇叶片中的裂纹

获取原文
获取原文并翻译 | 示例

摘要

Inspection is an important part of many maintenance processes, especially for safety-critical system components. This work was motivated by the need to develop more effective methods to detect cracks in rotating components of aircraft engines. This paper describes the analysis of data from vibrothermography inspections on aircraft engine turbine blades. Separate but similar analysis were done for two different purposes. In both analyses, we fit statistical models with random effects to describe the crack-to-crack variability and the effect that the experimental variables have on the responses. In the first analysis, the purpose of the study was to find vibrothermography equipment settings that will provide good crack detection capability over the population of similar cracks in the particular kind of aircraft engine turbine blades that were inspected. Then, the fitted model was used to determine the test conditions where the probability of detection (POD) is expected to be high and probability of alarm is expected to be low. In our second analysis, crack size information was added and a similar model was fit This model provides an estimate of POD as a function of crack size for specified test conditions. This function is needed as an input to models for planning in-service inspection intervals.
机译:检查是许多维护过程的重要组成部分,尤其是对安全性至关重要的系统组件。这项工作的动机是需要开发出更有效的方法来检测飞机发动机旋转组件中的裂纹。本文介绍了对飞机发动机涡轮叶片进行的放射热成像检查数据的分析。为了两个不同的目的,进行了单独但相似的分析。在这两种分析中,我们使用具有随机效应的统计模型进行拟合,以描述裂纹间的变异性以及实验变量对响应的影响。在第一个分析中,研究的目的是找到可在特定类型的被检查飞机发动机涡轮叶片中的类似裂纹群中提供良好裂纹检测能力的振动热成像设备设置。然后,使用拟合模型确定预期的检测概率(POD)高而预期的警报概率低的测试条件。在我们的第二次分析中,添加了裂纹尺寸信息,并拟合了类似的模型。该模型提供了在指定测试条件下POD随裂纹尺寸变化的估计值。需要此功能作为计划使用中检查间隔的模型的输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号