首页> 外文期刊>Radar, Sonar & Navigation, IET >Marine vessel classification based on passive sonar data: the cepstrum-based approach
【24h】

Marine vessel classification based on passive sonar data: the cepstrum-based approach

机译:基于被动声纳数据的船舶分类:基于倒谱的方法

获取原文
获取原文并翻译 | 示例

摘要

Marine vessel classification is complicated by the variability in the radiated signal of the marine vessel because of changing machinery configuration for the same class of vessels. Further, the radiated signal of the marine vessel propagating towards a distant receiver undergoes random fluctuations in phase, amplitude and frequency. The ambient noise at the receiver will further complicate the authors' classification problem. The shallow underwater channel, in particular, where these classification systems are more likely to operate presents the most challenges because of severe time-varying multi-path. Cepstral approaches are proposed in this study, including cepstral features and average cepstral features to augment existing feature sets that are mostly based on spectral analysis. Analytical studies have been supported by simulation experiments and tests on real ship recorded data. The cepstral features with cepstral liftering process is able to significantly reduce the multipath distortion effects of shallow underwater channel whereas the average cepstral feature is able to notably reduce the time-varying channel effects.
机译:由于相同类别船舶的机械配置发生变化,因此船舶辐射信号的可变性使船舶分类变得复杂。此外,向远方接收器传播的船舶的辐射信号在相位,幅度和频率上经历随机波动。接收器的环境噪声将使作者的分类问题更加复杂。尤其是在这些分类系统更可能运行的浅水水下通道,由于严峻的时变多径技术,带来了最大的挑战。在这项研究中提出了倒频谱方法,包括倒频谱特征和平均倒频谱特征,以增强主要基于频谱分析的现有特征集。分析研究得到了模拟实验和对真实船舶记录数据的测试的支持。带有倒谱提升过程的倒谱特征能够显着降低浅水水下通道的多径畸变效应,而平均倒谱特征能够显着降低时变信道效应。

著录项

  • 来源
    《Radar, Sonar & Navigation, IET》 |2013年第1期|87-93|共7页
  • 作者

    Das A.; Kumar A.; Bahl R.;

  • 作者单位

    Centre for Applied Research in Electronics, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110 016, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号