首页> 外文期刊>Radar, Sonar & Navigation, IET >Train distance and speed estimation using multi sensor data fusion
【24h】

Train distance and speed estimation using multi sensor data fusion

机译:使用多传感器数据融合列车距离和速度估计

获取原文
获取原文并翻译 | 示例

摘要

The accurate distance and speed estimates of train and individual coaches are necessary for the safe operation of the high-speed train system. Often, the train system does not rely on a single sensor for its distance and speed measurements as the sensors are susceptible to diverse operating conditions such as snow, rain, fog, tunnel, hilly region, slip, slide, etc. Hence, the information from a combination of sensors which can complement each other under certain operating conditions is required for the correct estimation. For distance measurements, Global Navigation Satellite System (GNSS) and balise are generally used. For speed sensing, the combination of wheel sensor, radar and GNSS are chosen. The diversity of sensors in terms of sampling rate and noise characteristics, etc. greatly affect the overall estimation accuracy and reliability if the measurements are used directly. Hence, this work presents a probabilistic weighted fusion algorithm which is based on the nonlinear longitudinal train dynamic model. The fusion algorithm combines the state estimates from distributed and sensor-specific extended Kalman filters. The effectiveness of the proposed fusion algorithm is demonstrated on the simulated sensor measurements along with a wide range of noises, spurious measurements, train operating conditions and track environmental disturbances.
机译:高速列车系统安全运行是必要的列车和单个教练的准确距离和速度估计。通常,火车系统不依赖于单个传感器,因为传感器易受雪,雨,雾,隧道,丘陵地区,滑动,幻灯片等不同操作条件的距离和速度测量,因此信息从可以在某些操作条件下互相补充的传感器的组合是正确的估计所必需的。对于距离测量,通常使用全球导航卫星系统(GNSS)和平等。对于速度感测,选择车轮传感器,雷达和GNSS的组合。如果直接使用测量,则在采样率和噪声特性等方面的传感器的多样性大大影响了整体估计精度和可靠性。因此,该工作提出了一种基于非线性纵向训练动态模型的概率加权融合算法。 Fusion算法组合了分布式和特定于传感器扩展卡尔曼滤波器的状态估计。在模拟的传感器测量和众多噪声,杂散测量,火车操作条件和跟踪环境干扰上,证明了所提出的融合算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号