首页> 外文期刊>Radar, Sonar & Navigation, IET >Convolutional neural network for classifying space target of the same shape by using RCS time series
【24h】

Convolutional neural network for classifying space target of the same shape by using RCS time series

机译:利用RCS时间序列对相同形状的空间目标进行分类的卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Warhead and decoy classification is one of the most important and difficult technical problems in ballistic missile defence. The conventional methods extract features from the measured data and employ some classification algorithms. However, it is hard to extract all the information embedded in the raw data, and there might be contradictory features lowering the classification ability. A one-dimensional convolutional neural network structure named RCSnet was proposed to classify the warhead and decoy targets of the same shape in midcourse, which directly utilises the radar cross-section (RCS) time series. It was compared with 5 conventional classification algorithms which used 26 selected features on simulation dataset, and it outperformed them in both classification performance and predicting speed. Different training algorithms and networks of the RCSnet structure with different filter numbers were explored for better utilising the RCSnet.
机译:弹头和诱饵的分类是弹道导弹防御中最重要和最困难的技术问题之一。常规方法从测量数据中提取特征,并采用一些分类算法。但是,很难提取嵌入在原始数据中的所有信息,并且可能存在降低分类能力的矛盾特征。提出了一种称为RCSnet的一维卷积神经网络结构,用于对中途相同形状的弹头和诱饵目标进行分类,这直接利用了雷达截面(RCS)时间序列。将其与5种常规分类算法进行了比较,这些算法在模拟数据集上使用了26种选定的特征,并且在分类性能和预测速度方面均优于它们。为了更好地利用RCSnet,探索了具有不同过滤器编号的RCSnet结构的不同训练算法和网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号