首页> 外文期刊>Queueing systems >Additive functionals with application to sojourn times in infinite-server and processor sharing systems
【24h】

Additive functionals with application to sojourn times in infinite-server and processor sharing systems

机译:可应用于无限服务器和处理器共享系统中的附加功能

获取原文
获取原文并翻译 | 示例

摘要

We deal with additive functionals of stationary processes. It is shown that under some assumptions a stationary model of the time-changed process exists. Further, bounds for the expectation of functions of additive functionals are derived. As an application we analyze virtual sojourn times in an infinite-server system where the service speed is governed by a stationary process. It turns out that the sojourn time of some kind of virtual requests equals in distribution an additive functional of a stationary time-changed process, which provides bounds for the expectation of functions of virtual sojourn times, in particular bounds for fractional moments and the distribution function. Interpreting the G/(n)/G/(n)/∞ system or equivalently the Gl(n)/GI system under state-dependent processor sharing as an infinite-server system where the service speed is governed by the number n of requests in the system provides results for sojourn times of virtual requests. In the case of M(n)/GI(n)/∞, the sojourn times of arriving and added requests equal in distribution sojourn times of virtual requests in modified systems, which yields several results for the sojourn times of arriving and added requests. In case of positive integer moments, the bounds generalize earlier results for M/GI(n)/∞. In particular, the mean sojourn times of arriving and added requests in M(n)/GI(n)/∞ are proportional to the required service time, generalizing Cohen's famous result for M/GI(n)/∞.
机译:我们处理固定过程的附加功能。结果表明,在某些假设下,存在时变过程的平稳模型。此外,推导了期望附加功能的功能的界限。作为一个应用程序,我们分析了无限服务器系统中的虚拟停留时间,其中服务速度由固定过程控制。事实证明,某种虚拟请求的停留时间在分布上等于平稳时变过程的附加功能,这为虚拟停留时间的函数期望提供了界限,尤其是分数矩和分布函数的界限。将状态依赖的处理器共享下的G /(n)/ G /(n)/∞系统解释为G1(n)/ GI系统,作为无限服务器系统,其中服务速度由请求数n决定该系统中的结果提供了虚拟请求的停留时间。在M(n)/ GI(n)/∞的情况下,修改后的系统中到达和添加的请求的停留时间与虚拟请求的分配停留时间相等,这为到达和添加的请求的停留时间产生多个结果。在正整数矩的情况下,边界可概括M / GI(n)/∞的较早结果。特别是,M(n)/ GI(n)/∞中到达和添加请求的平均停留时间与所需服务时间成比例,从而概括了Cohen对于M / GI(n)/∞的著名结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号