首页> 外文期刊>Queueing Systems >Two-parameter heavy-traffic limits for infinite-server queues
【24h】

Two-parameter heavy-traffic limits for infinite-server queues

机译:无限服务器队列的两参数流量限制

获取原文
获取原文并翻译 | 示例

摘要

In order to obtain Markov heavy-traffic approximations for infinite-server queues with general non-exponential service-time distributions and general arrival processes, possibly with time-varying arrival rates, we establish heavy-traffic limits for two-parameter stochastic processes. We consider the random variables Q e (t,y) and Q r (t,y) representing the number of customers in the system at time t that have elapsed service times less than or equal to time y, or residual service times strictly greater than y. We also consider W r (t,y) representing the total amount of work in service time remaining to be done at time t+y for customers in the system at time t. The two-parameter stochastic-process limits in the space D([0,∞),D) of D-valued functions in D draw on, and extend, previous heavy-traffic limits by Glynn and Whitt (Adv. Appl. Probab. 23, 188–209, 1991), where the case of discrete service-time distributions was treated, and Krichagina and Puhalskii (Queueing Syst. 25, 235–280, 1997), where it was shown that the variability of service times is captured by the Kiefer process with second argument set equal to the service-time c.d.f.
机译:为了获得具有一般非指数服务时间分布和一般到达过程(可能具有随时间变化的到达率)的无限服务器队列的Markov重流量逼近,我们建立了两参数随机过程的重流量限制。我们考虑随机变量Q e (t,y)和Q r (t,y),它们代表系统在时间t的服务时间已过的客户数量小于或等于时间y,或剩余服务时间严格大于y。我们还考虑了W r (t,y),它表示系统中的客户在t时刻要在t + y时刻完成的剩余服务时间内的工作总量。 D中D值函数的空间D([0,∞),D)中的两参数随机过程极限借鉴并扩展了Glynn和Whitt(Adv。Appl.Probab。 23,188–209,1991),其中处理了离散的服务时间分布,以及Krichagina和Puhalskii(Queueing Syst。25,235–280,1997),其中显示了服务时间的可变性。由Kiefer进程将第二个参数设置为等于服务时间cdf

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号