首页> 外文期刊>Quality Control, Transactions >GBRAS-Net: A Convolutional Neural Network Architecture for Spatial Image Steganalysis
【24h】

GBRAS-Net: A Convolutional Neural Network Architecture for Spatial Image Steganalysis

机译:GBRAS-NET:用于空间图像隐星分析的卷积神经网络架构

获取原文
获取原文并翻译 | 示例

摘要

Advances in Deep Learning (DL) have provided alternative approaches to various complex problems, including the domain of spatial image steganalysis using Convolutional Neural Networks (CNN). Several CNN architectures have been developed in recent years, which have improved the detection accuracy of steganographic images. This work presents a novel CNN architecture which involves a preprocessing stage using filter banks to enhance steganographic noise, a feature extraction stage using depthwise and separable convolutional layers, and skip connections. Performance was evaluated using the BOSSbase 1.01 and BOWS 2 datasets with different experimental setups, including adaptive steganographic algorithms, namely WOW, S-UNIWARD, MiPOD, HILL and HUGO. Our results outperformed works published in the last few years in every experimental setting. This work improves classification accuracies on all algorithms and bits per pixel (bpp), reaching 80.3% on WOW with 0.2 bpp and 89.8% on WOW with 0.4 bpp, 73.6% and 87.1% on S-UNIWARD (0.2 and 0.4 bpp respectively), 68.3% and 81.4% on MiPOD (0.2 and 0.4 bpp), 68.5% and 81.9% on HILL (0.2 and 0.4 bpp), 74.6% and 84.5% on HUGO (0.2 and 0.4 bpp), using BOSSbase 1.01 test data.
机译:深度学习(DL)的进步已经为各种复杂问题提供了替代方法,包括使用卷积神经网络(CNN)的空间图像麻木分析领域(CNN)。近年来已经开发了几个CNN架构,这提高了隐写图像的检测准确性。该工作提出了一种新的CNN架构,其涉及使用滤波器组的预处理阶段来增强隐性噪声,使用深度和可分离的卷积层和跳过连接。使用Bossbase 1.01进行评估性能,并使用不同的实验设置,包括自适应隐写算法,即哇,S-Uniware,MIPOD,HILO和HUGO。我们的结果在每个实验环境中过去几年发表的工作表现优势。这项工作提高了每像素(bpp的)所有的算法和比特分类精确度,达到上WOW 80.3%与0.2 BPP和WOW用0.4 BPP 89.8%,73.6%和87.1%的S-UNIWARD(0.2和0.4 BPP分别), MIPOD(0.2和0.4 bpp)的68.3%和81.4%,丘陵(0.2和0.4 bpp)的68.5%和81.9%,雨果(0.2和0.4 bpp)上的74.6%和84.5%,使用BOSSBASE 1.01测试数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号