首页> 外文期刊>Quality Control, Transactions >A Bean Optimization-Based Cooperation Method for Target Searching by Swarm UAVs in Unknown Environments
【24h】

A Bean Optimization-Based Cooperation Method for Target Searching by Swarm UAVs in Unknown Environments

机译:基于Bean优化的基于群优化的合作方法,用于在未知环境中的群UVS搜索

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the target searching problem using swarms of unmanned aerial vehicles (UAVs) in unknown environments which information is unknown to the UAVs, other than features they detect through their sensors. Effective decision and control methods are required for UAVs that consider their limitations and characteristics when confronted with target searching problems. A cooperative target searching method is proposed for swarm UAVs based on an improved bean optimization algorithm (BOA) called Robot Bean Optimization Algorithm (RBOA). Compared with conventional BOAs used for optimal computation, RBOA has two main modifications for the cooperative control of swarm robots: 1) it accounts for the free motion space of individual UAVs using a Thiessen polygon; and 2) it adds a free space search mechanism to improve the efficiency of target searching. Based on the above improvements, and by integrating a multi-phase search mechanism and scheduling control strategy, a swarm UAV collaborative search simulation platform is built for experimental purposes. The results obtained from search simulations show that the RBOA can outperform adaptive robotic particle swarm optimization (A-RPSO) in target searches in complex and unknown environments, especially with fewer evolutionary generations and smaller numbers of robots. The RBOA, which is inspired by plant population evolutionary patterns, has fast and effective search capabilities, distributed collaborative interaction, and emergent swarm intelligence. It provides new ideas and support for research into the control of swarm UAVs and swarm robots.
机译:本文研究了在未知环境中使用无人驾驶航空车辆(UAV)的群体的目标搜索问题,除了通过其传感器检测的特征之外的信息是未知的。无人机需要有效的决策和控制方法,以便在面对目标搜索问题时考虑其限制和特征。基于改进的Bean优化算法(BOA)的Swarm UAV提出了一种合作目标搜索方法,称为机器人Bean优化算法(RBOA)。与用于最佳计算的传统蟒蛇相比,RBOA对群体机器人的合作控制有两个主要修改:1)它占据了各个无人机的自由运动空间,使用Thiessen多边形; 2)它增加了自由空间搜索机制,以提高目标搜索的效率。基于上述改进,并通过集成多相搜索机制和调度控制策略,构建了一种用于实验目的的群UAV协作搜索仿真平台。从搜索仿真获得的结果表明,RBOA可以在复杂的和未知环境中的目标搜索中占据自适应机器人粒子群优化(A-RPSO),尤其是较少的进化代和较少数量的机器人。由植物种群进化模式启发的RBOA具有快速有效的搜索能力,分布式协作互动和紧急群体智能。它为研究群无人机和群机器人的控制提供了新的想法和支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号