首页> 外文期刊>Quality Control, Transactions >Sewer Pipeline Fault Identification Using Anomaly Detection Algorithms on Video Sequences
【24h】

Sewer Pipeline Fault Identification Using Anomaly Detection Algorithms on Video Sequences

机译:在视频序列上使用异常检测算法的下水道管道故障识别

获取原文
获取原文并翻译 | 示例

摘要

Most existing sewer pipeline condition assessment methods determine the presence and types of faults via examination of videos, which is a time-consuming and labor-intensive process. A few automatic methods based on image processing techniques can be used to detect specific faults. However, these methods have limitations due to the presence of unpredictable sewer pipeline fault patterns. Deep learning methods have also been applied to sewer pipeline fault detection. However, these methods require a large amount of annotated data to obtain reliable results. In this paper, we propose a fault detection method that applies unsupervised machine learning based anomaly detection algorithms with feature extraction to videos recorded by new sewer pipeline visual inspection equipment. The recorded videos are regarded as sequence signals, which are converted into feature vectors, followed by application of an anomaly detection algorithm. Unlike existing methods, the proposed method is computationally efficient as it does not require an annotated fault sample database for training fault detection models. We evaluate various anomaly detection algorithms and feature combinations on real sewer pipeline data collected in Shenzhen, with an overall accuracy result of above 90& x0025;. The proposed method provides a new and fast technique for surveying urban sewer pipelines, and to facilitate further research in this area, we have made the code and data used in this paper publicly available.
机译:大多数现有的下水道管线条件评估方法通过对视频的检查确定故障的存在和类型,这是一种耗时和劳动密集型的过程。基于图像处理技术的一些自动方法可用于检测特定故障。然而,由于存在不可预测的下水道管道故障模式,这些方法具有局限性。深度学习方法也已应用于下水道管道故障检测。但是,这些方法需要大量的注释数据来获得可靠的结果。在本文中,我们提出了一种故障检测方法,将无监督的机器学习的基于Omyaly检测算法应用于新的下水道管道视觉检查设备记录的视频。记录的视频被视为序列信号,其被转换为特征向量,然后应用于异常检测算法。与现有方法不同,所提出的方法是计算的,因为它不需要用于训练故障检测模型的带注释的故障样本数据库。我们评估了深圳收集的真实下水道管道数据的各种异常检测算法和特征组合,总精度结果为90&x0025;该方法提供了一种用于测量城市下水道管道的新技术,并促进该领域的进一步研究,我们已公开使用本文中使用的代码和数据。

著录项

  • 来源
    《Quality Control, Transactions》 |2020年第2020期|39574-39586|共13页
  • 作者单位

    Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China|Shenzhen Univ Coll Informat Engn Shenzhen 518060 Peoples R China|Shenzhen Univ Shenzhen Key Lab Spatial Smart Sensing & Serv Shenzhen 518060 Peoples R China;

    Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China;

    Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China|Shenzhen Univ Coll Civil & Transportat Engn Shenzhen 518060 Peoples R China|Shenzhen Univ Shenzhen Key Lab Spatial Smart Sensing & Serv Shenzhen 518060 Peoples R China;

    Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China|Shenzhen Univ Coll Civil & Transportat Engn Shenzhen 518060 Peoples R China;

    Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China;

    Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China|Shenzhen Univ Shenzhen Key Lab Spatial Smart Sensing & Serv Shenzhen 518060 Peoples R China;

    Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China|Shenzhen Univ Coll Civil & Transportat Engn Shenzhen 518060 Peoples R China;

    Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China|Shenzhen Univ Coll Civil & Transportat Engn Shenzhen 518060 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pipelines; Feature extraction; Anomaly detection; Fault detection; Inspection; Fault diagnosis; Anomaly detection; sewer pipeline; feature extraction; fault detection;

    机译:管道;特征提取;异常检测;故障检测;检查;故障诊断;异常检测;下水道管道;特征提取;故障检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号