首页> 外文期刊>Quality Control, Transactions >Emotion Feature Analysis and Recognition Based on Reconstructed EEG Sources
【24h】

Emotion Feature Analysis and Recognition Based on Reconstructed EEG Sources

机译:基于重建EEG来源的情感特征分析与识别

获取原文
获取原文并翻译 | 示例

摘要

Emotion plays a significant role in perceiving external events or situations in daily life. Due to ease of use and relative accuracy, Electroencephalography (EEG)-based emotion recognition has become a hot topic in the affective computing field. However, scalp EEG is a mixed-signal and cannot directly indicate the exact information about active cortex sources of different emotions. In this paper, we analyze the significant differences of active source regions and frequency bands for pairs of emotions-based reconstructed EEG sources using sLORETA, and 26 Brodmann areas are selected as the regions of interest (ROI). And then, six kinds of time- and frequency-domain features from significant active regions and frequency bands are extracted to classify different emotions using support vector machines. Furthermore, we compare the classification performances of emotion features extracted from active source regions and EEG sensors. We have demonstrated that the features from selected source regions can improve the classification accuracy by extensive experiments on the DEAP and TYUT 2.0 EEG-based datasets.
机译:情绪在感知日常生活中的外部事件或情况下发挥着重要作用。由于易于使用和相对准确性,基于脑电图(EEG)的情感识别已成为情感计算领域的热门话题。但是,头皮EEG是混合信号,不能直接指示有关有源皮质源的不同情绪的确切信息。在本文中,我们分析了使用Sloreta对基于情绪对的基于情绪的重建eeg源的有效源区和频段的显着差异,并且选择了26个Brodmann区域作为感兴趣的区域(ROI)。然后,提取来自重要活动区域和频带的六种时间和频域特征,以使用支持向量机来分类不同的情绪。此外,我们比较从有源源区和脑电图传感器提取的情感特征的分类性能。我们已经证明,所选源区的特征可以通过对基于DEAP和Tyut 2.0 EEG的数据集进行广泛的实验来提高分类准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号